Roles of Heat Shock Protein gp96 in the ER Quality Control: Redundant or Unique Function?

  • Yang, Yi (Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center) ;
  • Li, Zihai (Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut Health Center)
  • Received : 2005.10.13
  • Accepted : 2005.10.15
  • Published : 2005.10.31

Abstract

Heat shock protein gp96 is an endoplasmic reticulum chaperone, belonging to the HSP90 family. The function of gp96 as a molecular chaperone was discovered more than 10 years ago, but its importance has been overshadowed by the brilliance of its role in immune responses. It is now clear that gp96 is instrumental in the initiation of both the innate and adaptive immunity. Recently, the roles of gp96 in protein homeostasis, as well as in cell differentiation and development, are beginning to draw more attention due to rapid development in the structural study of HSP90 and some surprising new discoveries from genetic studies of gp96. In this review, we focus on the aspect of gp96 as an ER molecular chaperone in protein maturation, peptide binding and the regulation of its activity.

Keywords

References

  1. Altmeyer, A., Maki, R. G., Feldweg, A. M., Heike, M., Protopopov, V. P., et al. (1996) Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int. J. Cancer 69, 340-349 https://doi.org/10.1002/(SICI)1097-0215(19960822)69:4<340::AID-IJC18>3.0.CO;2-9
  2. Anderson, M. S. and Miller, J. (1992) Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules. Proc. Natl. Acad. Sci. USA 89, 2282-2286
  3. Anderson, S. L., Shen, T., Lou, J., Xing, L., Blachere, N. E., et al. (1994) The endoplasmic reticular heat shock protein gp96 is transcriptionally upregulated in interferon-treated cells. J. Exp. Med. 180, 1565-1569 https://doi.org/10.1084/jem.180.4.1565
  4. Argon, Y. and Simen, B. B. (1999) GRP94, an ER chaperone with protein and peptide binding properties. Semin. Cell. Dev. Biol. 10, 495-505 https://doi.org/10.1006/scdb.1999.0320
  5. Arnold, D., Wahl, C., Faath, S., Rammensee, H. G., and Schild, H. (1997) Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J. Exp. Med. 186, 461-466 https://doi.org/10.1084/jem.186.3.461
  6. Baker-LePain, J. C., Sarzotti, M., Fields, T. A., Li, C. Y., and Nicchitta, C. V. (2002) GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J. Exp. Med. 196, 1447-1459 https://doi.org/10.1084/jem.20020436
  7. Banerjee, P. P., Vinay, D. S., Mathew, A., Raje, M., Parekh, V., et al. (2002) Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule. J. Immunol. 169, 3507-3518
  8. Bergman, L. W. and Kuehl, W. M. (1979) Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J. Biol. Chem. 254, 5690-5694
  9. Berwin, B., Hart, J. P., Rice, S., Gass, C., Pizzo, S. V., et al. (2003) Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J. 22, 6127-6136 https://doi.org/10.1093/emboj/cdg572
  10. Binder, R. J. and Srivastava, P. K. (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat. Immunol. 6, 593-599 https://doi.org/10.1038/ni1201
  11. Binder, R. J., Han, D. K., and Srivastava, P. K. (2000) CD91: a receptor for heat shock protein gp96. Nat. Immunol. 1, 151-155 https://doi.org/10.1038/77835
  12. Blachere, N. E., Li, Z., Chandawarkar, R. Y., Suto, R., Jaikaria, N. S., et al. (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1315-1322 https://doi.org/10.1084/jem.186.8.1315
  13. Bonifacino, J. S. and Lippincott-Schwartz, J. (1991) Degradation of proteins within the endoplasmic reticulum. Curr. Opin. Cell Biol. 3, 592-600 https://doi.org/10.1016/0955-0674(91)90028-W
  14. Booth, C. and Koch, G. L. (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59, 729-737 https://doi.org/10.1016/0092-8674(89)90019-6
  15. Brunati, A. M., Contri, A., Muenchbach, M., James, P., Marin, O., et al. (2000) GRP94 (endoplasmin) co-purifies with and is phosphorylated by Golgi apparatus casein kinase. FEBS Lett. 471, 151-155 https://doi.org/10.1016/S0014-5793(00)01378-8
  16. Bruneau, N., Lombardo, D., and Bendayan, M. (1998) Participation of GRP94-related protein in secretion of pancreatic bile saltdependent lipase and in its internalization by the intestinal epithelium. J. Cell Sci. 111 ( Pt 17), 2665-2679
  17. Bruneau, N., Lombardo, D., Levy, E., and Bendayan, M. (2000) Roles of molecular chaperones in pancreatic secretion and their involvement in intestinal absorption. Microsc. Res. Tech. 49, 329-345 https://doi.org/10.1002/(SICI)1097-0029(20000515)49:4<329::AID-JEMT2>3.0.CO;2-H
  18. Bush, K. T., Goldberg, A. L., and Nigam, S. K. (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J. Biol. Chem. 272, 9086-9092 https://doi.org/10.1074/jbc.272.14.9086
  19. Cabanes, D., Sousa, S., Cebria, A., Lecuit, M., Garcia-del Portillo, F., et al. (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24, 2827-2838 https://doi.org/10.1038/sj.emboj.7600750
  20. Cala, S. E. and Jones, L. R. (1994) GRP94 resides within cardiac sarcoplasmic reticulum vesicles and is phosphorylated by casein kinase II. J. Biol. Chem. 269, 5926-5931
  21. Campbell, K. S. (1999) Signal transduction from the B cell antigen-receptor. Curr. Opin. Immunol. 11, 256-264 https://doi.org/10.1016/S0952-7915(99)80042-9
  22. Chavany, C., Mimnaugh, E., Miller, P., Bitton, R., Nguyen, P., et al. (1996) p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J. Biol. Chem. 271, 4974-4977 https://doi.org/10.1074/jbc.271.9.4974
  23. Clairmont, C. A., De Maio, A., and Hirschberg, C. B. (1992) Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94. J. Biol. Chem. 267, 3983-3990
  24. Cowen, L. E. and Lindquist, S. (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185-2199 https://doi.org/10.1126/science.1118370
  25. Csermely, P., Miyata, Y., Schnaider, T., and Yahara, I. (1995) Autophosphorylation of grp94 (endoplasmin). J. Biol. Chem. 270, 6381-6388 https://doi.org/10.1074/jbc.270.11.6381
  26. Dai, J., Liu, B., Caudill, M. M., Zheng, H., Qiao, Y., et al. (2003) Cell surface expression of heat shock protein gp96 enhances cross-presentation of cellular antigens and the generation of tumor-specific T cell memory. Cancer Immun. 3, 1
  27. Doody, A. D., Kovalchin, J. T., Mihalyo, M. A., Hagymasi, A. T., Drake, C. G., et al. (2004) Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J. Immunol. 172, 6087-6092
  28. Eustace, B. K., Sakurai, T., Stewart, J. K., Yimlamai, D., Unger, C., et al. (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat. Cell. Biol. 6, 507-514 https://doi.org/10.1038/ncb1131
  29. Ferreira, L. R., Norris, K., Smith, T., Hebert, C., and Sauk, J. J. (1994) Association of Hsp47, Grp78, and Grp94 with procollagen supports the successive or coupled action of molecular chaperones. J. Cell. Biochem. 56, 518-526 https://doi.org/10.1002/jcb.240560412
  30. Foy, S. P. and Matsuuchi, L. (2001) Association of B lymphocyte antigen receptor polypeptides with multiple chaperone proteins. Immunol. Lett. 78, 149-160 https://doi.org/10.1016/S0165-2478(01)00256-5
  31. Gidalevitz, T., Biswas, C., Ding, H., Schneidman-Duhovny, D., Wolfson, H. J., et al. (2004) Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J. Biol. Chem. 279, 16543-16552 https://doi.org/10.1074/jbc.M313060200
  32. Grenert, J. P., Johnson, B. D., and Toft, D. O. (1999) The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J. Biol. Chem. 274, 17525-17533 https://doi.org/10.1074/jbc.274.25.17525
  33. Gupta, R. S. (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol. 12, 1063-1073
  34. Hammond, C. and Helenius, A. (1994) Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126, 41-52 https://doi.org/10.1083/jcb.126.1.41
  35. Hammond, C. and Helenius, A. (1995) Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7, 523-529 https://doi.org/10.1016/0955-0674(95)80009-3
  36. Hecht, J. T., Hayes, E., Snuggs, M., Decker, G., Montufar-Solis, D., et al. (2001) Calreticulin, PDI, Grp94 and BiP chaperone proteins are associated with retained COMP in pseudoachondroplasia chondrocytes. Matrix Biol. 20, 251-262 https://doi.org/10.1016/S0945-053X(01)00136-6
  37. Ishiguro, S., Watanabe, Y., Ito, N., Nonaka, H., Takeda, N., et al. (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J. 21, 898-908 https://doi.org/10.1093/emboj/21.5.898
  38. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., et al. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407-410 https://doi.org/10.1038/nature01913
  39. Katsumi, A., Senda, T., Yamashita, Y., Yamazaki, T., Hamaguchi, M., et al. (1996) Protein C Nagoya, an elongated mutant of protein C, is retained within the endoplasmic reticulum and is associated with GRP78 and GRP94. Blood 87, 4164-4175
  40. Kim, Y. K., Kim, K. S., and Lee, A. S. (1987) Regulation of the glucose-regulated protein genes by beta-mercaptoethanol requires de novo protein synthesis and correlates with inhibition of protein glycosylation. J. Cell. Physiol. 133, 553-559 https://doi.org/10.1002/jcp.1041330317
  41. Koch, G., Smith, M., Macer, D., Webster, P., and Mortara, R. (1986) Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J. Cell Sci. 86, 217-232
  42. Koch, G. L., Macer, D. R., and Wooding, F. B. (1988) Endoplasmin is a reticuloplasmin. J. Cell Sci. 90 ( Pt 3), 485-491
  43. Kopito, R. R. (1997) ER quality control: the cytoplasmic connection. Cell 88, 427-430 https://doi.org/10.1016/S0092-8674(00)81881-4
  44. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucoseregulated proteins. Nature 332, 462-464 https://doi.org/10.1038/332462a0
  45. Kuznetsov, G., Chen, L. B., and Nigam, S. K. (1994) Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J. Biol. Chem. 269, 22990-22995
  46. Kuznetsov, G., Chen, L. B., and Nigam, S. K. (1997) Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J. Biol. Chem. 272, 3057-3063 https://doi.org/10.1074/jbc.272.5.3057
  47. Kvist, S., Wiman, K., Claesson, L., Peterson, P. A., and Dobberstein, B. (1982) Membrane insertion and oligomeric assembly of HLA-DR histocompatibility antigens. Cell 29, 61-69 https://doi.org/10.1016/0092-8674(82)90090-3
  48. Lammert, E., Arnold, D., Nijenhuis, M., Momburg, F., Hammerling, G. J., et al. (1997) The endoplasmic reticulumresident stress protein gp96 binds peptides translocated by TAP. Eur. J. Immunol. 27, 923-927
  49. Lee, A. S. (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504-510 https://doi.org/10.1016/S0968-0004(01)01908-9
  50. Lewis, M. J., Mazzarella, R. A., and Green, M. (1985) Structure and assembly of the endoplasmic reticulum. The synthesis of three major endoplasmic reticulum proteins during lipopolysaccharide- induced differentiation of murine lymphocytes. J. Biol. Chem. 260, 3050-3057
  51. Li, Z. and Srivastava, P. K. (1993) Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J. 12, 31433151
  52. Linderoth, N. A., Popowicz, A., and Sastry, S. (2000) Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). J. Biol. Chem. 275, 5472-5477 https://doi.org/10.1074/jbc.275.8.5472
  53. Linderoth, N. A., Simon, M. N., Hainfeld, J. F., and Sastry, S. (2001) Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes. Essential role of some aromatic amino acid residues in the peptide-binding site. J. Biol. Chem. 276, 11049-11054 https://doi.org/10.1074/jbc.M010059200
  54. Linnik, K. M. and Herscovitz, H. (1998) Multiple molecular chaperones interact with apolipoprotein B during its maturation. The network of endoplasmic reticulum-resident chaperones (ERp72, GRP94, calreticulin, and BiP) interacts with apolipoprotein b regardless of its lipidation state. J. Biol. Chem. 273, 21368-21373 https://doi.org/10.1074/jbc.273.33.21368
  55. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C., and Klausner, R. D. (1988) Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209-220 https://doi.org/10.1016/0092-8674(88)90553-3
  56. Little, E. and Lee, A. S. (1995) Generation of a mammalian cell line deficient in glucose-regulated protein stress induction through targeted ribozyme driven by a stress-inducible promoter. J. Biol. Chem. 270, 9526-9534 https://doi.org/10.1074/jbc.270.16.9526
  57. Liu, B., Dai, J., Zheng, H., Stoilova, D., Sun, S., et al. (2003) Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc. Natl. Acad. Sci. USA 100, 15824-15829
  58. Liu, E. S. and Lee, A. S. (1991) Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. Nucleic Acids Res. 19, 5425-5431 https://doi.org/10.1093/nar/19.19.5425
  59. Lord, J. M. (1996) Go outside and see the proteasome. Protein degradation. Curr. Biol. 6, 1067-1069 https://doi.org/10.1016/S0960-9822(02)70666-0
  60. Maki, R. G., Old, L. J., and Srivastava, P. K. (1990) Human homologue of murine tumor rejection antigen gp96: 5′- regulatory and coding regions and relationship to stressinduced proteins. Proc. Natl. Acad. Sci. USA 87, 5658-5662
  61. Mazzarella, R. A. and Green, M. (1987) ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J. Biol. Chem. 262, 8875-8883
  62. Melnick, J., Aviel, S., and Argon, Y. (1992) The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J. Biol. Chem. 267, 21303-21306
  63. Melnick, J., Dul, J. L., and Argon, Y. (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370, 373-375 https://doi.org/10.1038/370373a0
  64. Menoret, A., Li, Z., Niswonger, M. L., Altmeyer, A., and Srivastava, P. K. (2001) An endoplasmic reticulum protein implicated in chaperoning peptides to major histocompatibility of class I is an aminopeptidase. J. Biol. Chem. 276, 33313-33318 https://doi.org/10.1074/jbc.M103383200
  65. Meunier, L., Usherwood, Y. K., Chung, K. T., and Hendershot, L. M. (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456-4469 https://doi.org/10.1091/mbc.E02-05-0311
  66. Mimnaugh, E. G., Chavany, C., and Neckers, L. (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796-22801 https://doi.org/10.1074/jbc.271.37.22796
  67. Nganga, A., Bruneau, N., Sbarra, V., Lombardo, D., and Le Petit-Thevenin, J. (2000) Control of pancreatic bile-saltependent- lipase secretion by the glucose-regulated protein of 94 kDa (Grp94). Biochem. J. 352 (Pt 3), 865-874 https://doi.org/10.1042/0264-6021:3520865
  68. Obermann, W. M., Sondermann, H., Russo, A. A., Pavletich, N. P., and Hartl, F. U. (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol. 143, 901-910 https://doi.org/10.1083/jcb.143.4.901
  69. Palladino, M. A., Jr., Srivastava, P. K., Oettgen, H. F., and DeLeo, A. B. (1987) Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas. Cancer Res. 47, 5074-5079
  70. Panaretou, B., Prodromou, C., Roe, S. M., O'Brien, R., Ladbury, J. E., et al. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829-4836 https://doi.org/10.1093/emboj/17.16.4829
  71. Prodromou, C., Roe, S. M., O'Brien, R., Ladbury, J. E., Piper, P. W., et al. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65-75 https://doi.org/10.1016/S0092-8674(00)80314-1
  72. Queitsch, C., Sangster, T. A., and Lindquist, S. (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417, 618-624 https://doi.org/10.1038/nature749
  73. Ramakrishnan, M., Tugizov, S., Pereira, L., and Lee, A. S. (1995) Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the endoplasmic reticulum. DNA Cell Biol. 14, 373-384 https://doi.org/10.1089/dna.1995.14.373
  74. Randow, F. and Seed, B. (2001) Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat. Cell. Biol. 3, 891-896 https://doi.org/10.1038/ncb1001-891
  75. Reddy, R. K., Lu, J., and Lee, A. S. (1999) The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)- binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 274, 28476-28483 https://doi.org/10.1074/jbc.274.40.28476
  76. Reddy, R. K., Dubeau, L., Kleiner, H., Parr, T., Nichols, P., et al. (2002) Cancer-inducible transgene expression by the Grp94 promoter: spontaneous activation in tumors of various origins and cancer-associated macrophages. Cancer Res. 62, 7207-7212
  77. Reed, R. C., Zheng, T., and Nicchitta, C. V. (2002) GRP94- associated enzymatic activities. Resolution by chromatographic fractionation. J. Biol. Chem. 277, 25082-25099 https://doi.org/10.1074/jbc.M203195200
  78. Robert, J., Menoret, A., and Cohen, N. (1999) Cell surface expression of the endoplasmic reticular heat shock protein gp96 is phylogenetically conserved. J. Immunol. 163, 4133-4139
  79. Rosser, M. F. and Nicchitta, C. V. (2000) Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. I. Evidence for allosteric regulation of ligand binding. J. Biol. Chem. 275, 22798-22805 https://doi.org/10.1074/jbc.M001477200
  80. Rosser, M. F., Trotta, B. M., Marshall, M. R., Berwin, B., and Nicchitta, C. V. (2004) Adenosine nucleotides and the regulation of GRP94-client protein interactions. Biochemistry 43, 8835-8845 https://doi.org/10.1021/bi049539q
  81. Rutherford, S. L. and Lindquist, S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396, 336-342 https://doi.org/10.1038/24550
  82. Schaiff, W. T., Hruska, K. A., Jr., Bono, C., Shuman, S., and Schwartz, B. D. (1991) Invariant chain influences posttranslational processing of HLA-DR molecules. J. Immunol. 147, 603-608
  83. Schaiff, W. T., Hruska, K. A., Jr., McCourt, D. W., Green, M., and Schwartz, B. D. (1992) HLA-DR associates with specific stress proteins and is retained in the endoplasmic reticulum in invariant chain negative cells. J. Exp. Med. 176, 657-666 https://doi.org/10.1084/jem.176.3.657
  84. Schmidt, B. Z. and Perlmutter, D. H. (2005) Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am. J. Physiol. Gastrointest Liver Physiol. 289, G444-G455 https://doi.org/10.1152/ajpgi.00237.2004
  85. Shiu, R. P., Pouyssegur, J., and Pastan, I. (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74, 3840-3844
  86. Siligardi, G., Hu, B., Panaretou, B., Piper, P. W., Pearl, L. H., et al. (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J. Biol. Chem. 279, 51989-51998 https://doi.org/10.1074/jbc.M410562200
  87. Srivastava, P. (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395-425 https://doi.org/10.1146/annurev.immunol.20.100301.064801
  88. Srivastava, P. K. and Das, M. R. (1984) The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int. J. Cancer 33, 417-422 https://doi.org/10.1002/ijc.2910330321
  89. Srivastava, P. K. and Heike, M. (1991) Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin. Immunol. 3, 57-64
  90. Srivastava, P. K., DeLeo, A. B., and Old, L. J. (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl. Acad. Sci. USA 83, 3407-3411
  91. Srivastava, P. K., Udono, H., Blachere, N. E., and Li, Z. (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39, 93-98
  92. Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U., et al. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239-250 https://doi.org/10.1016/S0092-8674(00)80203-2
  93. Suriano, R., Ghosh, S. K., Ashok, B. T., Mittelman, A., Chen, Y., et al. (2005) Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res. 65, 6466-6475 https://doi.org/10.1158/0008-5472.CAN-04-4639
  94. Suto, R. and Srivastava, P. K. (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585-1588 https://doi.org/10.1126/science.7545313
  95. Udono, H., Levey, D. L., and Srivastava, P. K. (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Natl. Acad. Sci. USA 91, 3077-3081
  96. Vabulas, R. M., Braedel, S., Hilf, N., Singh-Jasuja, H., Herter, S., et al. (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem. 277, 20847-20853 https://doi.org/10.1074/jbc.M200425200
  97. Van, P. N., Peter, F., and Soling, H. D. (1989) Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrinlike proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles. J. Biol. Chem. 264, 17494-17501
  98. Vogen, S., Gidalevitz, T., Biswas, C., Simen, B. B., Stein, E., et al. (2002) Radicicol-sensitive peptide binding to the Nterminal portion of GRP94. J. Biol. Chem. 277, 40742-40750 https://doi.org/10.1074/jbc.M205323200
  99. Wassenberg, J. J., Reed, R. C., and Nicchitta, C. V. (2000) Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. II. Ligand-mediated activation of GRP94 molecular chaperone and peptide binding activity. J. Biol. Chem. 275, 22806-22814 https://doi.org/10.1074/jbc.M001476200
  100. Wearsch, P. A. and Nicchitta, C. V. (1996) Endoplasmic reticulum chaperone GRP94 subunit assembly is regulated through a defined oligomerization domain. Biochemistry 35, 16760-16769 https://doi.org/10.1021/bi962068q
  101. Wearsch, P. A. and Nicchitta, C. V. (1997) Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent. J. Biol. Chem. 272, 5152-5156 https://doi.org/10.1074/jbc.272.8.5152
  102. Wearsch, P. A., Voglino, L., and Nicchitta, C. V. (1998) Structural transitions accompanying the activation of peptide binding to the endoplasmic reticulum Hsp90 chaperone GRP94. Biochemistry 37, 5709-5719 https://doi.org/10.1021/bi9801006
  103. Wegele, H., Muschler, P., Bunck, M., Reinstein, J., and Buchner, J. (2003) Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. J. Biol. Chem. 278, 39303-39310 https://doi.org/10.1074/jbc.M305751200
  104. Welch, W. J., Garrels, J. I., Thomas, G. P., Lin, J. J., and Feramisco, J. R. (1983) Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J. Biol. Chem. 258, 7102-7111
  105. Wiertz, E. J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., et al. (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432-438 https://doi.org/10.1038/384432a0
  106. Wiest, D. L., Bhandoola, A., Punt, J., Kreibich, G., McKean, D., et al. (1997) Incomplete endoplasmic reticulum (ER) retention in immature thymocytes as revealed by surface expression of 'ER-resident' molecular chaperones. Proc. Natl. Acad. Sci. USA 94, 1884-1889
  107. Yamazaki, K., Nguyen, T., and Podack, E. R. (1999) Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J. Immunol. 163, 5178-5182
  108. Zhang, J. and Herscovitz, H. (2003) Nascent lipidated apolipoprotein B is transported to the Golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, calreticulin, and cyclophilin B. J. Biol. Chem. 278, 7459-7468 https://doi.org/10.1074/jbc.M207976200
  109. Zhao, R., Davey, M., Hsu, Y. C., Kaplanek, P., Tong, A., et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715-727 https://doi.org/10.1016/j.cell.2004.12.024
  110. Zheng, H., Dai, J., Stoilova, D., and Li, Z. (2001) Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J. Immunol. 167, 6731-6735