• Title/Summary/Keyword: Heat Island Effects

Search Result 119, Processing Time 0.021 seconds

Urbanization Effects on Reference Evapotranspiration (도시화에 따른 수문기후변화 II (도시화가 기준 증발산량에 미치는 영향))

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.571-583
    • /
    • 2007
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on Penman-Monteith reference evapotranspiration, and energy and aerodynamic terms of Penman-Monteith reference evapotranspiration have been studied. In this study, 56 climatological stations including the Seoul metropolis in South Korea have been selected, and the area of study site was set at $314\;km^2$. The climatological station is centrally located In the study area with a 10 km radius. The geographical and topographical characteristics of these sites were examined using GIS analysis. Land use status of the study area was also examined to estimate the extent of urbanization. The study results indicated that the variation of reference evapotranspiration rate is closely related to urbanization in most climatological stations. The level of change in reference evapotranspiration was higher in areas with higher urbanization rates. The change in reference evapotranspiration appears to be caused by temperature rises following heat island phenomena due to urbanization, and by the decrease in humidity, wind speed and sunshine duration due to the Increase in residential areas in urban districts. Especially, the humidity decrease causes a significant decrease in evapotranspiration rate. The study results showed that climatic change due to urbanization and proximity to the coast had the greatest effect on reference evapotranspiration.

Study of Benefit Characteristics for Low Impact Development (LID) Facilities demonstrated in Seoul Metropolitan (서울시 저영향개발(LID) 시범 시설에 대한 편익 특성 연구)

  • Lee, Seung Won;Kim, Reeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.299-308
    • /
    • 2016
  • Seoul metropolitan has established a vision as 'Healthy water-cycle city' to resolve urban water-environmental deterioration. And it established administrative structure to expand Low Impact Development (LID) facilities to recover aggravated water-cycle and water-environment. Therefore, various LID facilities are constructed and operated, however, benefit analytic plans for systematic valuation are insufficient. In this study, to analyze economic, environmental and social benefits of LID facilities, contents for benefit analysis were selected and categorized as water, energy, air quality and climate changes. As a result of quantification and valuation to the beneficial effects, LID facilities showed the total benefit as 1,191~3,292 won/yr. Characteristics of benefit distribution by analysis contents were various reflecting functional characteristics of each LID facility (Water: 30~90%, Energy: 4~44%, Air quality: <1~2%, Climate change: 5~22%). As a result of Triple Bottom Line analysis, economic benefit showed the greatest portion as 75~90%. As further studies, suggested benefit assessment plans for each LID facility should be applied to inter-connected LID systems on complex-scaled area, and synergy effects by various LID systems would be evaluated such as prevention of heat island and flood disasters.

A Study on the Necessity of Vertical Garden in Public Places for Urban Environment Improvement (도시환경 개선을 위한 공공장소의 수직정원 필요성에 관한 연구)

  • Kim, Chul-soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.75-81
    • /
    • 2021
  • (Research background and purpose) Urban development has also had a significant impact on the eco-friendly industry. In the public environment, citizens are stressed in many areas, which has really made them need a natural ecological environment. Therefore, it is necessary to improve the environment into an eco-friendly urban public facility that breathes the urban environment space inside the building with plants. To this end, we want to show that the urban environment can be improved through vertical gardens. And through this, we want to contribute to the popularization of vertical gardens. (Research Methodology) we will analyze the problems of the current public environment in the city and look at the supplementation around vertical gardens. (Result) A study of the public environment in the city found problems such as gloomy environment, poor use of space, dim color, and poor air quality, and wanted to create a vertical garden to provide a pleasant shelter. These vertical gardens have influenced urban public places with improved aesthetics, increased social value, insulation and soundproofing effects of buildings, reduced urban heat island effects, and increased urban green appearance. (Conclusion)This study uses vertical gardens in public spaces to design public spaces that are more comfortable and share mental and physical health together.

Mapping Monthly Temperature Normals Across North Korea at a Landscape Scale (북한지역 평년의 경관규모 기온분포도 제작)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • This study was carried out to estimate monthly mean of daily maximum and minimum temperature across North Korea at a 30 m grid spacing for a climatological normal year (1971-2000) and the 4 decadal averages (1971-1980, 1981-1990, 1991-2000, and 2001-2010). A geospatial climate interpolation method, which has been successfully used to produce the so-called 'High-Definition Digital Climate Maps' (HD-DCM), was used in conjunction with the 27 North Korean and 17 South Korean synoptic data. Correction modules including local effects of cold air drainage, thermal belt, ocean, solar irradiance and urban heat island were applied to adjust the synoptic temperature data in addition to the lapse rate correction. According to the final temperature estimates for a normal year, North Korean winter is expected colder than South Korean winter by $7^{\circ}C$ in average, while the spatial mean summer temperature is lower by $3^{\circ}C$ than that for South Korea. Warming trend in North Korea for the recent 40 years (1971-2010) was most remarkable in spring and fall, showing a 7.4% increase in the land area with 15 or higher daily maximum temperature for April.

Development of small constructed wetland for urban and roadside areas (도시 및 도로 조경공간을 활용한 소규모 인공습지 조성 기술)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Cho, Hye-Jin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.231-242
    • /
    • 2011
  • Recently, the green spaces in the urban areas were greatly reduced due to urbanization and industrialization. As urban structures such as roads and buildings are built, the amount of impervious area within a watershed increases. High impervious surfaces are the common causes of high runoff volumes as the soil infiltration capacity decreases and the volume and rate of runoff increase thereby decreasing the groundwater recharge. These effects are causing many environmental problems, such as floods and droughts, climate change, heat island phenomenon, drying streams, etc. Most cities attempted to reduce sewer overflows by separating combined sewers, expanding treatment capacity or storage within the sewer system, or by replacing broken or decaying pipes. However, these practices can be enormously expensive than combined sewer overflows. Therefore, in order to improve these practices, alternative methods should be undertaken. A new approach termed as "Low Impact Development (LID)" technology is currently applied in developed countries around the world. The purpose of this study was to effectively manage runoff by adopting the LID techniques. Small Constructed Wetland(Horizontal Subsurface Flow, HSSF) Pilot-scale reactors were made in which monitoring and experiments were performed to investigate the efficiency of the system in removing pollutants from runoff. Based on the results of the Pilot-plant experiments, TSS, $COD_{Cr}$, TN, TP, Total Pb removal efficiency were 95, 82, 35, 91 and 57%, respectively. Most of the pollutants were reduced after passing the settling tank and the vertical filter media. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Analysis of Environmental Equity of Green Space Services in Seoul - The Case of Jung-gu, Seongdong-gu and Dongdaemun-gu - (서울지역 녹지서비스의 환경형평성 분석 - 중구, 성동구, 동대문구를 사례로 -)

  • Ko, Young Joo;Cho, Ki-Hwan;Kim, Woo-Chan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.100-116
    • /
    • 2019
  • Urban green spaces, as a means to mitigate social problems and environmental risks, are getting more attention in evaluating urban environment. The inequity of green space distribution is becoming a major issue in urban planning and management. This study investigated the characteristics of green space in 3 districts (Jung-gu, Dongdaemun-gu, Seongdong-gu), that are composed of 46 administrative divisions in central Seoul, to analyze the environmental equity of urban green spaces. The correlations between the amount of green space, including the coverage of street trees, and the socioeconomic status of each administrative division were analyzed. To deduce the effects of plant coverage on the urban temperature regime, the relationship between the normalized difference of vegetation index (NDVI) and land surface temperature (LST) was analyzed. The research revealed that the mean NDVI of an administrative division was negatively correlated with the percentage of basic living recipients and disabled people. The LST of a division with low NDVI was higher due to the lack of green coverage. Such environmental inequities were closely related to residential building type, which was strongly affected by the economic status of residents. The LST of an apartment area was $2.0^{\circ}C$ lower than that of single-family houses and multi-housing areas. This is expected as the average NDVI of the apartment area was more than twice as high as the other environments considered in this study. The inequity can be exacerbated without urban planning which is deliberately designed to reduce it.

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

A Study on the Effect of Cold Water Mass on Observed Air Temperature in Busan (부산지역 기온에 미치는 냉수대의 영향에 대한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Suh, Young-Sang;Han, In-Seong;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.132-146
    • /
    • 2014
  • The effects of the cold air generated from large cold water mass at the coastal area on observed air temperature in Busan were investigated using AWS(Automatic Weather Station) data at the Busan area operated by Korea Meterological Administration and SST(Sea Surface Temperature) data at the Gijang and Busan area operated by Korean National Fisheries Research Development Institute. First, the temperature difference between the coastal area and the city area was about $1^{\circ}C$ during cold water mass day while it was about $0.5^{\circ}C$ if cold water mass was not appeared. Second, for day time, the temperature at the coastal area was about $1^{\circ}C$ lower than that at the city area during cold water mass day, but the difference was only about $0.4^{\circ}C$ without cold water mass. On the other hand, for night time, the temperature at the coastal area was about $1.2^{\circ}C$ lower than that at the city area during cold water mass day and the difference was about $0.9^{\circ}C$ without cold water mass. As a result, temperature differences at night time were higher than those at day time whether or not cold water mass appeared. The reason for higher temperature at night time might be the urban heat island phenomenon.