• Title/Summary/Keyword: Heat Insulation

Search Result 887, Processing Time 0.026 seconds

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.

Analysis for Thermal Effect by an Unheated Housing Unit in Apartment (공동주택에서 비난방세대가 미치는 열적 영향)

  • Lee, Eun-Ju;Koo, Junemo;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • Adjacent housing units suffer inevitable thermal losses if an unheated unit exists in an apartment building. Thermal loss of the units adjoining the unheated apartment can be neglected because the contact area is small and insulators are located in the walls. When insulators are not included in the slab between the upper and lower units, 70% of the heat supplied by an Ondol system may be used in the original unit, but 30% is transferred to the unit on the lower floor. Another 30% can be obtained from the ceiling if the upper floor housing unit is heated. This strong thermal connection is a characteristic of Ondol heating in apartment buildings. When there is an unheated unit, the lower floor unit uses 42.3% more heating energy if there is no insulation and 19.5% if a 35 mm insulator is used as in the current guidelines. Therefore, much thicker insulation should be applied to weaken the thermal connection.

An Experimental Study on Quality Management of Strength in High Strength Mass Concrete Structure Using Thermal Insulation Material (보온재를 사용한 고강도 매스 콘크리트의 품질관리에 관한 연구)

  • Cho, Kyu-Hyun;Back, Min-Soo;Kim, Sung-Sik;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • This study is a basic experiment on quality management of the compression strength of high strength concrete, aiming. at quality management of high strength mass concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Different from ordinary concrete, high strength concrete generally shows the temperature high rising caused by hydration heat inside the concrete. It is known that, in mass concrete, thermal stress occurs due to the difference in temperature between the inside and the outside, which causes a significant difference in compression strength between structure beams and managerial test pieces. It is also reported that there is a large difference between the compression strength of cylindrical managerial test pieces of standard underwater curing and the strength of structure beam concrete. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created thermal insulation curing box and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

Development and Evaluation of Air Force Mechanic Parka to Enhance the Functions and Insulation (기능성과 보온성 향상을 위한 공군 정비파카 개발 및 평가)

  • Lee, Sung-Ji;Choi, Young-Lim;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.294-303
    • /
    • 2012
  • This study was designed to develop air force mechanic parka, evaluate it, and ultimately provide functionally superior parka to the air force. The development process was 1) conducting a survey, 2) identifying problems and shortcomings of currently-supplied parkas, and 3) improving the design, pattern and materials. The newly-developed parkas were evaluated in terms of their ease of fit, clothing mobility, and insulation. Ease of fit was evaluated by subjects' sensory tests, and clothing mobility was by fitness-for-motion tests and range-of-motion tests using a Goniometer. Evaluation on insulation was conducted by thermal manikins. Findings of this study were as follows: 1. In the subjective evaluation on clothing mobility, new parkas were considered to have sufficient ease of fit while previous ones scored much lower, confirming the improvement of the new version. 2. Both subjective tests and ROM measurements on fitness for motion verified the superiority of the new parkas. 3. Insulation tests found that although insulation capability of newly-developed parkas was at a similar level to those of the previous ones, their insulation capability per unit weight was superior, demonstrating that new parkas were better at blocking heat conduction. When making changes in parka patterns and designs to enhance the mobility, it was necessary to maintain the insulation function. The new parkas developed by this study was verified to be superior to the previous ones in their insulation and clothing mobility.

An Analysis on Thermal Insulation Effect of Farm Structures Coated with Surface Treatment (표면코팅 구조재의 달열효과 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.39-46
    • /
    • 2004
  • This experiment was carried out to study on the effect of surface coating on thermal insulation of farm structures to improve thermal resistance and reflective effect of solar radiation. Nine different types of experimental specimen were compared in the temperature variations of inside and outside; A, B, C, D. E and F types are box container and G, H and I types are drum container. The size of these containers is $1,500{\times}2,000{\times}2,500$ mm and ${\varphi}$ $280{\times}330$ mm, respectively. Specimen of 3-type box(A, B, C) is galvanized steel sheet of thickness 0.45 mm. D, E and F types are sandwich panel of the thickness 50 mm inserted with urethane, glass wool and polystyrene form, respectively. G, H and I types are paint pot using in general. The surface of A. D, E, F and I types didn't any treatment, B, C and G types were treated with thermal insulation coating on the outside surface(B, G) or the inside and outside surface(C). And H type was treated with water paint coating on the only outside surface. In general, the experimental results showed the following tendencies; In case of A, B and C types. it was found that the thermal insulation effect of types coated with thermal insulation coating was improved remarkably than that of no treatment. And the thermal insulation effect between steel sheet and sandwich panel type was nearly similar There was not a significant difference of thermal insulation effect between thermal insulation coating and water paint coating. In time of drum container filled with rough rice, The difference of heat transfer tendency and temperature variation among surface treatments was nearly similar that of box types of galvanized steel sheet. And there was time lag about 6 hours between the temperature of middle part of rice and that of inside or outside surface.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

A Study on Heat Transfer Characteristics of PCBs with a Carbon CCL (카본 CCL에 의한 PCB의 열전달 특성 연구)

  • Cho, Seunghyun;Jang, Junyoung;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.37-46
    • /
    • 2015
  • In this paper, the heat transfer characteristics of PCB (Printed Circuit Board) with cabon CCL (Copper Claded Layer) were studied through experiments and numerical analysis to compare of PCBs with conventional the FR-4 core and heavy copper cores. For study, samples are producted with HDI (High Density Interconnection) PCB of mobile phone with variations of thickness of core materials and grades of carbon material to evaluate heat transfer characteristics respectively. From this research results, heat transfer characteristics of the carbon core was rather low than heavy copper, but better than FR-4 core. In addition, even though the carbon and heavy copper core contributed on the heat transfer characteristics as their thickness increases, FR-4 cores disturbed heat transfer characteristics as it's thickness increases. Therefore, carbon core is recommendable to improve the heat transfer characteristics of the PCB because heavy copper core has much disadvantages such as increasing of wear of drill, the weight of PCB, and manufacturing cost by additional insulation materials for electrical insulation.

Light Throughable Insulation Materials in School Buildings (학교건물(學校建物)과 수광(受光) 단열재(斷熱材))

  • Kang, Cheol-Ku;Lee, Seong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.3 no.1
    • /
    • pp.31-38
    • /
    • 1996
  • In this thesis, we will theoratically and practically study and analyze how the heat flows through an opaque wall, which is by the new material insulated, of a school building in Korea. It will be an important information for the effective using guidelines of the new light throughable insulation materials in Korea.

  • PDF

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.