• Title/Summary/Keyword: Heat Insulation

Search Result 884, Processing Time 0.028 seconds

Properties of lightweight matrix for inorganic insulation by cement types (시멘트 종류별 무기단열재용 경량 경화체의 특성)

  • Lim, Jeong-Jun;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.222-223
    • /
    • 2018
  • Recent government policies are increasing interest in zero-energy housing, a building that minimizes energy consumption (90% reduction). As the importance of building passive performance is emphasized, the role of insulation is increasing as a way to reduce indoor heat loss in order to minimize the use of cooling and heating energy. There are two main types of insulation. Organic insulation is widely used for various construction structures such as construction and industrial due to some merits such as the convenience of construction and construction cost. However, it has been pointed out as a main cause every time a fire accident occurs, Jecheon Sports Center', the fire damage of buildings caused by the use of organic insulation materials is expanding to social problems, so it is urgent to research on nonflammable inorganic insulation materials.

  • PDF

Development of the E/R Insulation Modeling Automation System Using Structural Hull Model Information (선체 구조 모델 정보를 활용한 E/R Insulation 모델링 자동화 시스템 구축)

  • Park, Hoe-Yeon;Kang, Hyun-Gu;Park, Nam-Soo;Lee, Man-Sub
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.112-117
    • /
    • 2008
  • The Insulation, which is consist of the glass wool, mineral wool or perforated SUS plate, installed on the wall or under ceiling for the protecting heat and the blocking the noise of engine room area. In our shipyard, designing the structure model of insulation is hard and difficult, Because designed the insulation model is considered of any factors which are hull model properties of panel shape, direction and thickness and service of area. In this paper, We issue the way to utilize shape and direction of the hull model information and specific character of working space in engine room.

  • PDF

A Study on the Analysis of Insulation Performance according to Curtain Wall Type and Insulation Material Form (커튼월 형태 및 단열재 형상에 따른 단열성능 분석에 관한 연구)

  • You, Nam-Gyu;Hong, Sang-Hun;Kim, Hae-Na;Seo, Eun-Seok;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.165-166
    • /
    • 2019
  • Curtain wall means a non-bearing wall that forms the outer walls of a building to divide the exterior and interior space. The increased use of curtain walls is diverse, including structural safety, watertightness, and wind pressure. As the government's energy conservation policy and the aim of zero-energy houses, the importance of heat reduction is also greatly increased. So, the study of monotony is constantly being conducted. Thus, in this study, insulation performance was analyzed through simulation according to the shape of curtain wall and the shape of insulation inside, and the purpose of this study was to provide basic data on the application of insulation criteria by energy saving design of buildings.

  • PDF

The Effect of Heat Curing Methods on the Temperature History of the Fly Ash Concrete Subjected to Extremely Low Temperature (복합보온양생 방법이 극저온 조건하 플라이애시 치환 콘크리트의 온도이력에 미치는 영향)

  • Han, Min-Cheol;Son, Ho-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • In this study, temperature profile of the fly ash concrete were studied in accordance with the change of heating curing method combination for the slab concrete in order to develop efficient protection method of the concrete subjected to $-20^{\circ}C$. The slab concretes with the size of $1200mm{\times}600mm{\times}200mm$ were fabricated with W/B of 50% and exposed to $-20^{\circ}C$ for 7 days. Five different combinations of heat curing methods were applied to the slab concrete specimen; two combinations of heat supplying by electrical heater and surface heat insulation material such as polyethylene film and quadrupled layer bubble sheet based on heat enclosure installment; three combinations of heating coil embedment and surface heat insulation materials such as polyethylene film, sawdust and quadrupled layer bubble sheet based on heat enclosure installment. Test results showed that by applying both heating coil and bubble sheet and heat enclosure, the concrete exposed to $-20^{\circ}C$ can be effectively protected from early-age frost damage.

  • PDF

Method applied to evaluate heat leakage of cryogenic vessel for liquid hydrogen

  • Li, Zhengqing;Yang, Shengsheng;Wang, Xiaojun;Yuan, Yafei
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.1
    • /
    • pp.7-11
    • /
    • 2021
  • Cryogenic vessels are special equipment that requires periodic evaluation of their thermal insulation performance. At the current standard, the test is considered as the loss product or heat leakage of cryogenic vessel, which takes over 72 h to evaluate; consequently, a large amount of working medium is discharged to the environment in the process. However, hydrogen is flammable and explosive, and the discharged gas may be dangerous. If liquid hydrogen is replaced with liquid nitrogen before testing, the operation then becomes complicated, and the loss product or heat leakage cannot respond to the thermal insulation performance of cryogenic vessels for liquid hydrogen. Therefore, a novel method is proposed to evaluate the heat leakage of cryogenic vessels for liquid hydrogen in self-pressurization. In contrast to the current testing methods, the method proposed in this study does not require discharge or exchange of working medium in all test processes. The proposed method is based on one-dimensional heat transfer analysis of cryogenic vessels, which is verified by experiment. When this method is used to predict the heat leakage, the comparison with the experimental data of the standard method shows that the maximum error of heat leakage is less than 5.0%.

A study on the annual energy performance of apartment building with the equivalent U-value of envelope considering the effect of thermal bridges (공동주택 외피의 열교영향을 고려한 상당열관류율 및 연간 에너지소비성능 평가 연구)

  • Kim, Dong Su;Yoon, Jong Ho;Shin, U Cheul;Kwak, Hee Yul
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2012
  • The building envelope is important specially for saving energy consumption of residential buildings. but Apartment houses in Korea commonly have inside insulation system which have constantly arisen thermal bridges, the risk of heat loss, as a necessity. This study aims to evaluate integrated insulation performance according to the different shapes of external walls, adjacent to windows. The thermal performance analysis was carried out by Equivalent U-value and using the three-dimensional heat transfer computer simulation (TRISCO-RADCON), under nine different cases of comparing among three each of different bases(current standard model, 30percent energy saving model and 60percent energy saving model). The heating and the cooling load were also compared between two cases (standard U-value and Equivalent U-value) of three each of different bases, using the Building energy simulation which is based on DOE-2.1 analysis. As results, it turns out that if the Equivalent U-value is considered on the envelope analysis, the heat flow loss will be increasing more than the standard U-value, and if heat insulation property of the residential building reinforced rather than current, the rate of influences on the thermal bridges would be extremely expanded. In addition, it is shown that annual heating loads of the apartment house with applied Equivalent U-value substantially increased by more than 15 percent compared to those with the existing U-value, but annual cooling loads were negligibly affected.

Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation (외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량)

  • Rhee, Kyu-Nam;Jung, Gun-Joo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

Dressing Poses in Relation to Clothing Thermal Insulation

  • Li, Jun;Zhang, Weiyuan;Liu, Yan
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.544-549
    • /
    • 2002
  • By the movable thermal manikin developed by China Dong Hua university, the laws of clothing thermal insulation influenced by dressing poses are studied. It is found that $I_a$ on nude thermal manikin has no relation to testing pose as a whole (notable level is 5%), while the change of testing pose influences $I_a$ value on parts of body obviously. The testing result $I_{cle}$ on clothed thermal manikin has relation to testing pose. The $I_{cle}$ value of the whole body in seated pose decreases 20 percent compared with that in standing pose (notable level is 1%). In view of heat transmission theory, the reasons are pointed out based on the knowledge of heat transmission.

Effect of The Heat Curing Sheet Combined with Duble Layered Bubble Sheets and Light Heat Generating Materials on Surface Temperature History of the Concrete (광발열시트 및 2중 버블시트를 조합한 보온양생시트를 적용한 콘크리트의 양생 효과)

  • Han, Cheon-Goo;Han, Min-Cheol;Jung, Woung-Seon;Nam, Sang-Heon;Kim, Su-Hoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.39-40
    • /
    • 2022
  • This study is intended to examine the curing effect of the combination of the bubble sheet on the concrete by analyzing the temperature profile and core strength of the simulated concrete structure. The test results relvealed that the average temperature of the concrete applying photothermal sheet overlapped with the double bubble sheet at the bottom was 23.5℃, which had the highest insulation and insulation effect compared to other types of surface insulation curing sheets, and the core strength increased by up to 56%.

  • PDF

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.