• Title/Summary/Keyword: Heat Convection

Search Result 1,309, Processing Time 0.026 seconds

Thermal Performance Analysis and Optimization of Two-dimensional Trombe Wall Solar System (2차원 축열벽형 태양열시스템의 열성능해석 및 최적화)

  • 이원근;유성연;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1609-1620
    • /
    • 1993
  • A Study on the trombe wall system, a kind of passive solar systems, has been performed numerically. The system is treated as a two-dimensional steady turbulent natural convection including constant heat source per unit area. The numerical code, "PHOENICS, " was employed to analyze this conduction-convection conjugated heat transfer. The general mode of the flow field was examined, and the exchange of mass between two recirculating flows is found to be the major mechanism of the heat transfer. It is shown that the performance is affected by the changes in the geometrical factors-the thickness of the wall, the width between the windowand the wall, and size of the vents. Further analysis has been performed to show the optimal geometry with regard to the last two factors.o factors.

Optimization of an Annular Fin with a Pipe of Variable Inner Radius for Fixed Fin Volume (고정된 휜 체적에 기준한 원관 내부반경이 변하는 환형 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Optimum values of fin performance and dimensions for an annular fin with a rectangular profile and a pipe with variable inner radius are determined by using a variable separation method. The range of ambient convection characteristic number that results in optimum heat loss is listed. The optimum heat loss, corresponding optimum fin effectiveness, fin length, and fin height are presented as a function of the inner radius of the pipe, inner fluid convection characteristic number, fin volume, and ambient convection characteristic number. One of the results shows that the optimum heat loss, fin effectiveness and fin length increase linearly with the inner radius of the pipe when both the fin volume and fin-base radius are fixed.

A numerical study on the combined natural convection and radiation in a partially open complex enclosure with a heater and partitions (발열체와 격막이 있고 일부가 열린 복합공간내의 자연대류-복사열전달에 관한 수치적 연구)

  • Kim, Tae-Guk;Min, Dong-Ho;Han, Gyu-Ik;Son, Bong-Se;Seo, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.235-251
    • /
    • 1997
  • A numerical simulation on the combined natural convection and radiation is carried out in a partially open rectangular enclosure with a heater by using the finite volume and the S-8 discrete ordinate methods. The fluid inside the enclosure is considered as an absorbing, emitting and anisotropic scattering media. The heater causes a natural circulation of the fluid (10$^{5}$ $^{9}$ ) which results in significant in-flow of the ambient cold fluid through the partially open wall. Comparing the results of pure convection with those of the combined convection- radiation, the combined heat transfer results with small Planck numbers (P$_{l}$ <1.0) show much stronger circulation than those of the pure convection, and the fluid circulation is more evident for larger Rayleigh numbers. When one of three radiative properties - the medium absorption coefficient, the wall reflectivity, and the scattering albedo - increases, the fluid circulation and the heat transfer in the enclosure are reduced. The location of the heater and the open ratio of the right wall are also shown to affect the fluid circulation and heat transfer significantly. However, the anisotropy of the scattering phase function is shown to be unimportant for the fluid circulation and heat transfer within the enclosure considered in this study.

A Finite Element Analysis of Conjugate Heat Transfer Inside a Cavity with a Heat Generating Conducting Body (고체 열원이 존재하는 공동 내의 복합열전달 문제의 유한요소해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Yong, Ho-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.170-177
    • /
    • 2009
  • In the present study, a finite element analysis of conjugate heat transfer problem inside a cavity with a heat-generating conducting body, where constant heat flux is generated, is conducted. A conduction heat transfer problem inside the solid body is automatically coupled with natural convection inside the cavity by using a finite element formulation. A finite element formulation based on SIMPLE type algorithm is adopted for the solution of the incompressible Navier-Stokes equations coupled with energy equation. The proposed algorithm is verified by solving the benchmark problem of conjugate heat transfer inside a cavity having a centered body. Then a conjugate natural heat transfer problem inside a cavity having a heat-generating conducting body with constant heat flux is solved and the effect of the Rayleigh number on the heat transfer characteristics inside a cavity is investigated.

Analysis of Natural Convection Heat Transfer and Solidification of a Two-Layered Pool (2층으로 성층화된 풀 내에서의 자연대류 열전달과 고화현상에 대한 연구)

  • Kim J.;Kang K. S.;Kim S. B.;Kim H. D.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • The natural convection heat transfer and solidification in a stratified pool are studied. The flow and heat transfer characteristics in a heat generating pool are compared between single-layered and double-layered pools. And local Nusselt number distributions on outer walls are obtained to consider thermal loads on a vessel wall. The cooling and solidification of Al₂O₃/Fe melt in a hemispherical vessel are simulated to study the mechanism of heat transfer and temperature distribution. A unstructured mesh is chosen for this study because of the non-orthogonality originated from the boundaries of double-layered pool. Interface between the layers is modeled to be fixed. With this assumption mass flux across the interface is neglected, but shear force and heat flux are considered by boundary conditions. The colocated cell-centered finite volume method is used with the Rhie-Chow interpolation to compute cell face velocity. To prevent non-physical solutions near walls in case body force is large the wall pressure is extrapolated by the way to include body force. The numerical solutions calculated by current method show that averaged downward heat flux of the double-layered pool increases compared to single-layered pool and maximum temperature occurs right below the interface of the layers.

  • PDF

Numerical study on the thermal behavior of a natural convection hybrid fin heat sink (자연대류상의 하이브리드 휜 히트싱크의 열특성에 대한 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • This paper reports numerical study results with respect to the thermal behavior of a natural convection cooled hybrid fin heat sink (HFH). The HFH consists of hybrid fins, hollow pin fins integrated with plate fins. The thermal performance of the HFH was numerically investigated by employing a commercial CFD software package and compared with that of the pin fin heat sink (PFH). Numerical study has found that array-based and mass-based heat transfer coefficients of the HFH are 12% and 37% greater than those of the PFH, respectively. Extended surface area and lighter weight may explain the better thermal performance of the HFH than the PFH.

Natural Convection Heat Transfer in a Hemispherical Pool with Volumetric Heat Sources (체적 열원이 내재된 반구에서의 자연대류 열전달)

  • Park, Hae-Kyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.135-141
    • /
    • 2015
  • The core melts stratifies into lower mixture layer and upper metal layer by density in a severe accident condition. The decay heat generated from the mixture layer threatens the integrity of the reactor vessel. This study simulated the natural convection heat transfer of the mixture layer with volumetric heat source using the mass transfer system. $H_2SO_4-CuSO_4$ electroplating system was used as the mass transfer system. With the modified Rayleigh number of $3{\times}10^{14}$, the Nusselt number showed minimum at the bottom and increased along curvature to the top of the experimental apparatus.

Mechanisms of Convective and Boiling Heat Transfer Enhancement via Ultrasonic Vibration (초음파 진동에 의한 대류 및 비등 열전달 촉진 원리에 관한 연구)

  • Kim, Yi-Gu;Kim, Ho-Young;Kang, Seoung-Min;Kang, Byung-ha;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.612-619
    • /
    • 2003
  • This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when tile local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism.

Heat and Mass Transfer between Hot Waste Gas and Cold Water in a Direct Contact Heat Exchanger (직접접촉식 열교환기내에서 물과 배기가스의 직접접촉에 의한 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1171-1178
    • /
    • 1992
  • An experiment was performed to describe the heat and mass transfer occurring between hot waste gas and cold water through direct contact in a direct contact heat exchanger. This model was then used to obtain an equation of overall heat transfer coefficent based on heat exchanger volume. The diffusion heat transfer rate is 2-3 times larger than the convection heat transfer rate as results of condensation of the water vapor contained in the waste gas. The boiler efficiency increases over 10%.

A performance comparison of heat sink using FEM in the natural convection (자연대류에서 유한요소법을 이용한 히트싱크의 성능비교)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2018
  • The peltier thermoelectric module are used to cool the heat generated by electronic equipment. In order to increase the efficiency of the peltier thermoelectric module, the heat must be released to the outside. A heat sink is used to discharge such heat to the outside. in this paper, two types of heat sinks with internal tunnels were designed. And the heating and cooling performance of the heat sink with internal tunnel structure was compared and analyzed through ANSYS. The heat sink of the A type had better heat transfer than the heat sink of the B type. Which is about 70% improved.