DOI QR코드

DOI QR Code

Natural Convection Heat Transfer in a Hemispherical Pool with Volumetric Heat Sources

체적 열원이 내재된 반구에서의 자연대류 열전달

  • Received : 2015.08.11
  • Accepted : 2015.09.17
  • Published : 2015.09.30

Abstract

The core melts stratifies into lower mixture layer and upper metal layer by density in a severe accident condition. The decay heat generated from the mixture layer threatens the integrity of the reactor vessel. This study simulated the natural convection heat transfer of the mixture layer with volumetric heat source using the mass transfer system. $H_2SO_4-CuSO_4$ electroplating system was used as the mass transfer system. With the modified Rayleigh number of $3{\times}10^{14}$, the Nusselt number showed minimum at the bottom and increased along curvature to the top of the experimental apparatus.

중대사고시 핵연료와 원자로 내부 구조물이 용융되어 원자로용기의 하부에 재배치되면 밀도차이에 의하여 상부의 금속용융물층과 하부의 혼합물층으로 나누어진다. 하부 반구의 혼합물층에서는 지속적으로 붕괴열이 발생하고 이 열은 원자로용기의 건전성을 위협한다. 본 연구는 반구 내부의 체적 열원(Volumetric heat source)이 내재된 매질에서의 자연대류 열전달 현상을 물질전달 실험방법을 이용하여 모사하였다. 황산-황산구리의 구리도금계를 물질전달계로 사용하여 모사를 수행하였다. 수정 Rayleigh 수 $3{\times}10^{14}$에 대하여 Nusselt 수는 반구 하단에서 최소값을 보였고 곡면부를 따라 최상단으로 갈수록 증가하였다.

Keywords

References

  1. Suh, K. Y., In-vessel retention strategy for high power reactors, Korea Electrical Engineering & Science Research Institute, Korea, 2005.
  2. Palagin, A. and Kretzschmar, F., LIVE test FSt4: experimental results and simulation by CONV code, The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Knanazawa City, Japan, 2009.
  3. Bonnet, J. M. and Seiler, J. M., Thermal hydraulic phenomena in corium pools: The BALI experiment, 7th International Conference on Nuclear Engineering, Tokyo, Japan, 1999.
  4. Kymalainen, O. et al., Heat flux distribution from a volumetrically heated pool with high Rayleigh number, Nuclear Engineering and Design, 1994, 149, 401-408. https://doi.org/10.1016/0029-5493(94)90305-0
  5. Sehgal, B. R. et al., SIMECO Experiments on In-Vessel Melt Pool Formation and Heat Transfer with and without a Metallic Layer, Division of Nuclear Power Safety, Royal Institute of Technology, Brinellvagen 60, 10044 Stockholm, Sweden.
  6. Lee, J. K., Experimental study of natural convection heat transfer in a volumetrically heated semicircular pool, Annals of Nuclear Energy, 2014, 73, 432-440. https://doi.org/10.1016/j.anucene.2014.07.019
  7. Agar, J. N., Diffusion and convection at electrodes, Discussion of Faraday Society, 1947, 26, 27-37.
  8. Bejan, A., Convection Heat Transfer, 3rd ed., New York, John Wiley & Sons, INC, 2003.
  9. Levich, V. G., Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs & NJ, 1962.
  10. Selman, J. R. et al., Advances in Chemical Engineering, 10th, Academic Press, New York and London, 1978.
  11. Konishi, Y. et al., Anodic dissolusion phenomena accompanying supersaturation of copper sulfate along a vertical plane copper anode, Electrochemica Acta, 2003, 48, 2615-2624. https://doi.org/10.1016/S0013-4686(03)00305-0