• Title/Summary/Keyword: Heading Command

Search Result 14, Processing Time 0.019 seconds

A site-specific CFD study of passing ship effects on multiple moored ships

  • Chen, Hamn-Ching;Chen, Chia-Rong;Huang, Erick T.
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-77
    • /
    • 2019
  • A local-analytic-based Navier-Stokes solver has been employed in conjunction with a compound ocean structure motion analysis program for time-domain simulation of passing ship effects induced by multiple post-Panamax class ships in the exact condition of a real waterway. The exact seabed bathymetry was reproduced to the utmost precision attainable using the NOAA geophysical database for Virginia Beach, NOAA nautical charts for Hampton Roads and Norfolk harbor, and echo sounding data for the navigation channel and waterfront facilities. A parametric study consists of 112 simulation cases with various combinations of ship lanes, ship speeds, ship heading (inbound or outbound), channel depths, drift angles, and passing ship coupling (in head-on or overtaking encounters) were carried out for two waterfront facilities at NAVSTA Norfolk and Craney Island Fuel Terminal. The present paper provides detailed parametric study results at both locations to investigate the site-specific passing ship effects on the motion responses of ships moored at nearby piers.

Robust Autopilot Design for Nonsquare Flight Systems (비정방 비행 시스템에 대한 강인한 자동조종장치 설계)

  • 김종식;정성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1123-1131
    • /
    • 1993
  • A robust controller is proposed to design a flight autopilot for lateral motion control. The control system has two control loops in order to meet the performance and to maintain the stability-robustness for a nonsquare flight system with uncertain aerodynamic variations and disturbance. One is designed via linear quadratic Gaussian with loop transfer recovery(LQG/LTR) design methodology for the inner loop. The other is designed via proportional controller design method for the outer loop. To show the effectiveness of this control system, it is compared with the LQG/LTR control system for a square flight system and is analyzed for the performance/stability-robustness to model uncertainties and disturbance via wind gusts. It is found that the proposed control system has good heading command-following performance under allowable sideslip angle in spite of model uncertainties and disturbance.

A Study of Contents Arrangement in Conning Display (선박항법기기 화면의 배치에 관한 연구)

  • Yoon, Hoon-Yong;Kim, Kyung-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • The conning display which is located in the ship bridge shows the various important information such as ship position, ship speed, track data, rate of turn, thruster rpm so on, and is one of the IBSs(Integrated Bridge Systems). In this study, the survey was conducted for ten officers to find the importance and using frequency of the information which were displayed in the conning display. The results showed that the information of drift speed, ship speed, wind direction and wind force, rate of turn, sea water depth, ship position, heading, thrust rpm, alarm, rudder command and angle got high scores and it meant that these information were very important and high frequency of use during the navigation. The optimized contents arrangement in conning display was suggested based on importance and using frequency of information. The experiment using eye-tracking system was conducted to compare the performance time and error rate of nine different scenarios for suggested arrangement display and three other existing displays. The results showed that the suggested arrangement was the best in performance time and error rate. The scenario concerning the direction and speed of wind showed faster performance time and lower error rate than other scenarios. The movement of subject's eye tended to search from the center and to avoid the comer, called 'the comer effect.' It is expected that the results of this study could help for the bridge staff to grasp the sailing information easily and to cope with the given situations promptly.

Joystick Control Algorithm for Berthing and Unberthing of Waterjet Propelled Unmanned Surface Vehicle Using Actuator Nonlinear Model (구동기 비선형 모델을 이용한 워터제트 추진 무인수상정의 조이스틱기반 이접안 제어 알고리즘)

  • Seong-Jin Ahn;Mooncheol Won;Sun Young Kim;Hansol Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.165-174
    • /
    • 2023
  • Unmanned Surface Vehicle (USV)'s berthing and unberthing is the most difficult maneuvering tasks and have the highest risk of accidents. In this paper, we designed a berthing/unberthing control algorithm given human joystick command for an USV equipped with a waterjet and a bow thruster. The berthing and unberthing maneuvers are performed remotely by a joystick operator at the Ground Control Center (GCC) where the status of USV and environmental situation can be monitored. We interpret the human joystick commands into USV's desired speed, yaw rate, and heading angle commands. next, we developed a control algorithm for the desired target values of MIMO actuators (engine speed, bucket step, nozzle angle, and bow thruster state) to follow the interpreted commands. The validity of the control algorithm is confirmed through simulations and sea trials at Gwang Am port.