• Title/Summary/Keyword: Head-disk interface(HDI)

Search Result 22, Processing Time 0.023 seconds

Study on the Effect of Particles Injected Into the Head/Disk Interface (헤드-디스크 인터페이스에 주입되는 입자의 영향에 대한 연구)

  • Han Je-Hee;Lee Rae-Jun;Kim Dae-Eun;Kang Tae-Sik;Cho Keung-Youn
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-183
    • /
    • 2005
  • Particles in the HDD can cause serious damages such as scratches and thermal asperity(TA) at the head/disk interface(HDI). Accordingly, particles cause data loss including physical and electrical damages. To improve the reliability of head-disk interface, understanding the damage characteristics at the HDI due to particle interactions is required. The materials such as $A1_2O_3$, TiC and aluminum were used in this experiment. The size and hardness of particles injected into the HDI are closely relevant to surface damage caused the data loss on the disk and head. In this paper, a variety of scratches were analyzed using scanning electron microscope(SEM) and atomic force microscope(AFM). In order to analyze defects of very small size on the disk, optical surface analyzer(OSA) was also used.

  • PDF

Effect of Particulate Contamination on the Friction and Wear of Head-Disk Interface with Picoslider (오염입자가 Picoslider의 헤드-디스크 인테페이스 마찰 마모에 미치는 영향)

  • ;Bharat Bhushan
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.395-402
    • /
    • 2000
  • The effect of particulate contamination on friction and wear between a negative-pressure picoslider and a laser-textured disk was studied. Particles of different concentrations, materials and sizes were injected to the head-disk interface (HDI), consisting of disks with various textures, at the same speed. In a contaminated environment, durability of head-disk interface gradually decreased as the particle concentration increased. Large particles caused HDI failure early and resulted in an extensive damage to the slider and disk surfaces. Hard particles also caused HDI failure earlier and damages more extensive than soft ones. Based on the test results, mechanisms of HDI failure with picoslider were presented.

Study on Scratch Characteristic of HDD due to Slider Slap (슬라이더 슬랩에 의한 하드디스크의 표면 스크래치 특성에 관한 연구)

  • Shin, Il-Sup;Kim, Hyun-Joon;Kim, Dae-Eun;Yoo, Jin-Gyoo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Reliability of a hard disk drive depends on the head disk interface (HDI) characteristics. Particularly, the disk media and the head can be damaged due to contact between the two components during operation. The contact may occur due to particles being introduced into the disk/slider interface or due to direct contact between the slider and the disk. Such contacts may be induced by external vibration or abnormal operation of the HDI. In this work the characteristics of scratches generated on the disk surface were investigated. The scratches were generated by impacting the hard disk. The type of scratches was analyzed with respect to their shape and dimensions.

  • PDF

Analytical and Numerical Results for the Liquid-Lubricated Magnetic Head-disk Interface Using Measured Rheological Data

  • Streator, Jeffrey L.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.93-98
    • /
    • 1995
  • To increase the information storage density in magnetic disk files, the head, the headdisk spacing must be reduced. This has motivated the investigation of alternatives to the conventional air-lubricated head-disk interface (HDI), which operates at a spacing of about 100 nm. One such alternative under consideration is the liquid-lubricated bearing. To properly model the HDI with a liquid bearing it is necessary to incorporate the theological properties of liquid lubricants at high shear rates. These rheological properties themselves are most easily measured within the HDI. Recently, some question has arisen in the literature concerning the interpretation of the frictional data acquired in this manner. In this study analytical and numerical solutions of the Reynolds eqn. are applied to the starved, liquid lubricated HDI to provide some validation of the rheological data reported the author and coworkers (Streator et al., 1994). Results of the analysis highlight the importance of the inlet taper region in determining the equilibrium configuration of the starved HDI even when only a small fraction of its length is wetted by the lubricant.

Investigation of Interface between Slider and Plastic Disk for Optical Head (Optical head를 고려 한 slider와 plastic disk의 interface에 대한 연구)

  • 박진무;정구현;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • Near-field recording NFR), advanced optical storage technology, relies on maintaining a small gap between the optical head and the media. This can be accomplished by utilizing the flying optical head concept as in the magnetic recording. In this research, slider/suspension system and plastic disk are tested for their head/disk interface performance. CSS tests are conducted to monitor the frictional and flying characteristics of sliders.

  • PDF

Investigation of Head-Disk Impact for Development of Ultra-Low Flying HDI (극저부상 HDI 개발을 위한 Head-Disk Impact 연구)

  • 조언정;박노열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.122-126
    • /
    • 2001
  • Magnetic hard disk drive is continually being pushed to reduce head-disk spacing for higher recording densities. The current minimum spacing between the air-bearing slider and disk has been reduced to under 15 nm. In this work, it was investigated if flying height could be lowered under the height of laser bumps. With the reduction of the spinning speed, the flying height was decreased under the height of laser bumps. When a head swept between landing zone and data zone, the head-disk impact was monitored using AE and friction signals. It is demonstrated that magnetic hard disk drive could be operated without tribological failures under the height of laser bumps.

  • PDF

Technologies for Small Form Factor Optical Disks (초소형 디스크 요소기술)

  • Kim Jin-Hong;Kim Jong-Hwan
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.113-118
    • /
    • 2005
  • Small form factor optical disks for near-field optics using solid immersion lens were developed. Disk durability properties in terms of head-disk interface (HDI) properties were investigated by drag test, diamond like carbon film and lubricant film were coated on the small form factor disk to enhance HDI. Disks with glass substrates and lubricant films after heat treatment showed more durable characteristics. Coverlayers made of UV resin were uniformly coated by spin coating In which the ski-jump could not be formed by adopting outer ring technique.

  • PDF

Technologies for Small Form Factor Optical Disks (초소형 디스크 요소기술)

  • Kim, Jin-Hong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Small form factor optical disks for near-field optics using solid immersion lens were developed. Diamond like carbon film and lubricant film were coated on the small form factor optical disk to enhance the head-disk interface(HDI) characteristics. The disk durability properties in terms of HDI phenomena were investigated by drag test. Disks with glass substrates and the lubricant films experienced heat treatment showed more durable characteristics. Coverlayers made of UV resin were uniformly coated by spin coating in which the ski-jump could be removed by adopting outer ring technique

  • PDF

Study on wear characteristics of commercialized HDD slider pad (상용 하드디스크 슬라이더 패드의 마모 특성에 관한 연구)

  • Jang, Cheol-Eun;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.139-143
    • /
    • 2007
  • In recent years new recording media and materials for head-disk interface (HDI) have been developed in order to increase the recording density of storage devices and decrease the cost of production. It is well known that HDI in hard disk drive (HDD) needs high durability and stability. The tribological characteristic of commercialized HDI systems is an important indicator of the HDD reliability. In this study, experimental investigation on the wear coefficient of commercialized hard disk slider pads was performed. The slider was placed on top of a hard disk and allowed to slide for a set distance. The wear of the pads was measured after the sliding tests. The result showed that the micro-bumps in commercialized HDD have extremely low wear coefficient of $10^{-11}$. The results of this work may be used for further development of the HDI technology for HDD.

  • PDF

FREQUENCY SPECTRUM ANALYSIS OF ACOUSTIC EMISSION OF HARD DISK DRIVE HEAD/DISK INTERACTION

  • Chung, K.H.;Oh, J.K.;Moon, J.T.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.273-274
    • /
    • 2002
  • In order to evaluate the flying characteristics of slider, the acoustic emission (AE) as well as friction signals are typically utilized. In this work the frequency spectrum analysis is performed using the AE signal obtained during the head/disk interaction such as load/unload mechanism using ramp, impact situation in the presence of a bump on disk surface and other contact phenomena including particle interaction. It was shown that the influence of impact can be characterized effectively in the AE frequency spectrum. As a result of this work, frequency spectrum analysis will be utilized with better understanding for studying the head/disk interface (HDI) characteristics and monitoring the particle interaction in HDI effectively.

  • PDF