• Title/Summary/Keyword: Head and Neck Phantom

Search Result 90, Processing Time 0.037 seconds

The Application of Chamfer Matching Algorithm to the Error Analysis of a Treatment Field between a Simulation Image and a Portal Image (챔퍼 매칭(Chamfer Matching) 알고리즘을 활용한 모의치료 영상과 포탈(Portal) 영상의 비교, 분석)

  • 송주영;나병식;정웅기;안성자;남택근;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.189-195
    • /
    • 2003
  • The comparative analysis of a portal image and a simulation image is a very important process in radiotherapy for verifying the accuracy of an actual treatment field. In this study, we applied a chamfer-matching algorithm to compare a portal image with a simulation image and verified the accuracy of the algorithm to analyze the field matching error in the portal image. We also developed an analysis program that could analyze the two images more effectively with a chamfer-matching method and demonstrated its efficacy through a feasibility study. With virtual portal images, the accuracy of the analysis algorithm were acceptable considering the average error of shift (0.64 mm), rotation (0.32$^{\circ}$), and scale (1.61%). When the portal images of a head and neck phantom were analyzed, the accuracy and suitability of the developed analysis program was proven considering the acceptable average error of shift (1.55 mm), rotation (0.80$^{\circ}$), and scale (1.72%). We verified the applicability of a chamfer-matching algorithm to the comparative analysis of a portal image with a simulation image. The analysis program developed in this study was a practical tool to calculate the quantitative error of the treatment field in a portal image.

  • PDF

The Effects of a Thyroid Shield Made of a Tissue-Equivalent Material on the Reduction of the Thyroid Exposure Dose in Panoramic Radiography (파노라마촬영 시 조직등가물질을 이용한 갑상선보호대의 갑상선피폭선량 감소효과)

  • Lee, Hye-Lim;Kim, Hyun-Yung;Choi, Hyung-Wook;Lee, Hye-Mi;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2278-2284
    • /
    • 2012
  • Exposure-dose reducing effect was measured by using bolus, a tissue-equivalent material as a shield to obtain useful diagnostic images while minimizing the radiation exposure of thyroid which is highly sensitive to radiation during panoramic radiography. The experiment was performed within the period of 1 June 2001 through 30 June 2011 by measuring entrance surface dose and deep dose at the thyroid-corresponding site of a head and neck phantom. As a result, the entrance surface dose in the thyroid for using no shield was 43.84 ${\mu}Gy$ on the average, and the thyroid shield of bolus 10 mm in thickness reduced the dose by 15.45 ${\mu}Gy$(35.24%) to 28.39 ${\mu}Gy$ on the average. The use of a 20 mm thyroid shield resulted in the dose of 25.38 ${\mu}Gy$ on the average, a 18.46 ${\mu}Gy$(42.10%) drop from 43.84 ${\mu}Gy$ for using no shield. On the site 20 mm below the surface, a thyroid shield 10 mm in thickness had no dose-reducing effect, while a 20 mm thyroid shield reduced the dose by 0.06 mSv(20%).

The Effect of Aquaplast on Surface Dose of Photon Beam (Aquaplast가 광자선의 표면선량에 미치는 영향)

  • Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.95-100
    • /
    • 1995
  • Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy Materials and Methods: To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in $25{\times}25{\times}3cm^3$ acrylic phantom and set on $25{\times}25{\times}5cm^3$ polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 100cm SSD for $5{\times}5cm^2$, $10{\times}10cm^2$ and $15{\times}15cm^2$ field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types of Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and Khan to correct overresponse of the Markus chamber. Results : The surface doses for open fields of $5{\times}5cm^2$, $10{\times}10cm^2$, and $15{\times}15cm^2$ were $79\%$, $13.6\%$, and $18.7\%$, respectively. The original Aquaplast increased the surface doses upto $38.4\%$, $43.6\%$, and $47.4\%$, respectively. For transformed Aquaplast, they were $31.2\%$, $36.1\%$, and $40.5\%$, respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by $0.2\%$, $1.7\%$, $3.0\%$ without Aquaplast, $0.2\%$, $1.9\%$, $3.7\%$ with transformed Aquaplast, respectively. Conclusion: The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax, however, were not affected by Aquaplast. In conclusion, although the use of Aquaplast in practice may cause some increase of skin and buildup region dose, reductioin of skin-sparing effect will not be so significant clinically.

  • PDF

Enhancement of Image Contrast in Linacgram through Image Processing (전산처리를 통한 Linacgram의 화질개선)

  • Suh, Hyun-Suk;Shin, Hyun-Kyo;Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2000
  • Purpose : Conventional radiation therapy Portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low-cost image processing method. Materials and Methods : Chest linacgram was obtained by irradiating humanoid Phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. Results :The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30$\%$ of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment peformed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Conclusion :Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for evaluating the patient positioning error.

  • PDF

Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study (단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구)

  • Kim, Jin Sung;Ju, Sang Gyu;Hong, Chae Seon;Jeong, Jaewon;Son, Kihong;Shin, Jung Suk;Shin, Eunheak;Ahn, Sung Hwan;Han, Youngyih;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.

Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor (토모테라피와 선형가속기를 이용한 동일 부위의 치료 시 종양 및 정상조직의 흡수선량 평가)

  • Cheon, Geum-Seong;Kim, Chang-Uk;Kim, Hoi-Nam;Heo, Gyeong-Hun;Song, Jin-Ho;Hong, Joo-Yeong;Jeong, Jae-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • Purpose: Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. Materials and Methods: After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two differents modalities. Results: The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head & neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. Conclusion: In case of comparing both simple summation absorbed dose and integration absorbed dose, the minimum dose are represented higher as well as the maximum dose come out lower and the average dose are revealed similar with our expected values data. It is able to evaluate tumor & normal tissue absorbed dose which could had been not realized by treatment plan system. The DVH of interesting region are prescribed lower dose than expected. From now on, it needs to develop the new modality which are able to realize exact dose distribution as well as integration absorbed dose evaluation in same treatment region with different modalities.

  • PDF

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

The Evaluation and Development of Head and Neck Radiation Protective Device for Chest Radiography in 10 Years Children (소아(10세) 흉부 방사선촬영에서의 두경부 방사선 방어기구 개발 및 평가)

  • Lee, Jun Ho;Lim, Hyun Soo;Lee, Seung Yeol
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • The frequency of diagnostic radiation examinations in medical institutions has recently increased to 220 million cases in 2011, and the annual exposure dose per capita was 1.4 mSv, 51% and 35% respectively, compared to those in 2007. The number of chest radiography was found to be 27.59% of them, the highest frequency of normal radiography. In this study, we developed a shielding device to minimize radiation exposure by shielding areas of the body which are unnecessary for image interpretation, during the chest radiography. And in order to verify its usefulness, we also measured the difference in entrance surface dose (ESD) and the absorbed dose, before and after using the device, by using an international standard pediatric (10 years) phantom and a glass dosimeter. In addition, we calculated the effective dose by using a Monte Carlo simulation-based program (PCXMC 2.0.1) and evaluated the reduction ratio indirectly by comparing lifetime attributable risk of cancer incidence (LAR). When using the protective device, the ESD decreased by 86.36% on average, nasal cavity $0.55{\mu}Sv$ (74.06%), thyroid $1.43{\mu}Sv$ (95.15%), oesophagus $6.35{\mu}Sv$ (78.42%) respectively, and the depth dose decreased by 72.30% on average, the cervical spine(upper spine) $1.23{\mu}Sv$ (89.73%), salivary gland $0.5{\mu}Sv$ (92.31%), oesophagus $3.85{\mu}Sv$ (59.39%), thyroid $2.02{\mu}Sv$ (73.53%), thoracic vertebrae(middle spine) $5.68{\mu}Sv$ (54.01%) respectively, so that we could verify the usefulness of the shielding mechanism. In addition, the effective dose decreased by 11.76% from $8.33{\mu}Sv$ to $7.35{\mu}Sv$ before and after wearing the device, and in LAR assessment, we found that thyroid cancer decreased to male 0.14 people (95.12%) and female 0.77 people (95.16%) per one million 10-year old children, and general cancers decreased to male 0.14 people (11.70%) and female 0.25 people (11.70%). Although diagnostic radiation examinations are necessary for healthcare such as the treatment of diseases, based on the ALARA concept, we should strive to optimize medical radiation by using this shielding device actively in the areas of the body unnecessary for the diagnosis.

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.

Evaluate the implementation of Volumetric Modulated Arc Therapy QA in the radiation therapy treatment according to Various factors by using the Portal Dosimetry (용적변조회전 방사선치료에서 Portal Dosimetry를 이용한 선량평가의 재현성 분석)

  • Kim, Se Hyeon;Bae, Sun Myung;Seo, Dong Rin;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Materials and Methods : Test was used for TrueBeam STx$^{TM}$ (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). Results : The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Conclusion : Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  • PDF