• Title/Summary/Keyword: Hazardous and noxious substances

Search Result 47, Processing Time 0.022 seconds

A Basic Study On the Development of the Computerized Response Aid System for HNS (HNS 방제정보지원시스템 개발에 관한 기초 연구)

  • Im Chang-Ho;No Chang-Gyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.215-220
    • /
    • 2006
  • The oil on board is a major source of sea pollutions. Recently, according to increasement of Hazardous and noxious substances carrying on board. Our greatest concern is how to response HNS spread pollution, addition to response oil spill pollution. This is first aim how can take a speedy and precise response. So introduce to development of the computerized response aid system for HNS.

  • PDF

A Study on the Necessity and Direction of Regulations on the Emission of Hazardous and Noxious Substances from Marine Industrial Facilities (해양산업시설의 위험유해물질 해양배출 규제체계 개선의 필요성과 규제방향에 대한 연구)

  • Lee, Moonjin;Kim, Kyewon;Kang, Wonsoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.737-743
    • /
    • 2021
  • In this paper, the current status of marine industrial facilities, regulatory legal systems, and emission status of hazardous and noxious substances (HNS) in these facilities were analyzed, and the direction of improvement of the regulatory system was presented accordingly. As a result of the analysis, it is estimated that about 1,100 marine industrial facilities are subject to the Marine Environment Management Act of 2007. It is estimated that 190 kinds of hazardous substances are discharged from these marine industrial facilities and are highly likely to flow into the ocean, of which 20 are estimated to be discharged into the water system. However, due to the lack of relevant laws and regulation, it is difficult to clearly determine whether the discharged material corresponds to an exceptional discharged material, making it difficult to effectively enforce regulations in the field. For this reason, effective regulatory enforcement is difficult in the regulatory field. The marine environment management law should clearly stipulate the exceptional emission standards and types of substances, and clarify the selection system, risk assessment system, and emission information collection and monitoring system for related Hazardous and Noxious Substances.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.

Analysis of Performance Requirements of Mechanical System for Recovery of Deposited Hazardous and Noxious Substances from Seabed around Seaport (항만 해저침적 위험유해물질(HNS) 회수용 기계장치의 성능요건 분석)

  • Hwang, Ho-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • Approximately 6,000 chemicals are transported through the sea, including hazardous and noxious substances (HNS), which cause marine pollution and are harmful to marine life. The HNS discharged into the sea during the maritime transportation process undergoes physical and chemical changes on the sea surface and in seawater, and some types of HNS sink and are deposited on the seabed. The HNS deposited on the seabed adversely affects the benthic ecosystem, and hence, it is desirable to detect, treat, and recover the HNS on the seabed. Therefore, this study was conducted to analyze the performance requirements that should be considered as the top priority when developing a mechanical system for recovering the HNS deposited on the seabed. Various types of existing dredging devices used for collecting and recovering pollutants from river beds and seabeds were investigated, and 10 performance indices for the mechanical devices were selected. The new performance requirements for the development of the seabed-deposited HNS recovery system were proposed using performance indices. By considering the depth of water in domestic seaports, some of the performance requirements of the mechanical system for recovering deposited HNS from the seabed were obtained as follows: production rate (50-300 ㎥/hr), maximum operation depth (50 m), sediment type (most forms), percentage of solids (10 % or higher), horizontal operating accuracy (±10 cm), limiting currents (3-5 knots). These performance requirements are expected to be useful in the conceptual and basic design of mechanical systems for recovering seabed-deposited HNS.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Conceptual Design of Mechanical System for Recovery of Seabed-Deposited Hazardous and Noxious Substances Based on Performance Requirements (해저침적 HNS 회수용 기계장치의 성능요건 기반 개념설계)

  • Hwang, Ho-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.689-697
    • /
    • 2020
  • Hazardous and noxious substances (HNS) may cause maritime incidents during marine transportation, which are liable to lead to a large amount of spillage or discharge into the sea. The damage to the marine environment caused by the HNS spill or discharge is known to be much greater than the damage caused by oil spill. Particularly dangerous is HNS, which is deposited or buried in the seabed, as it can damage the organisms that live on, in, and near the bottom of the sea, the so-called "benthos," forming the benthic ecosystem. Therefore, it is vital that the HNS deposited on the seabed be recovered. In order to do so, procedures and equipment are required for accurate detection, stabilization treatment, and recovery of HNS in subsea sediment. Thus, when developing a mechanical recovery system, the performance requirements should be selected using performance indices, and the conceptual design of the mechanical recovery system should be based on performance requirements decided upon and selected in advance. Therefore, this study was conducted to arrive at a conceptual design for a mechanical recovery system for the recovery of HNS deposited on the seabed. In the design of the system, based on the fundamental scenario, the method of suction foundation with the function of self enclosing was adopted for recovering the HNS sediment in the subsea sediment. The mechanical recovery system comprises the suction foundation, pollution prevention, a pump system, control system, monitoring device, location information device, transfer device, and tanks. This conceptual design is expected to be reflected and used in the basic design of the components and shapes of the mechanical recovery system.

HNS Detection Properties of Printed Ag:CNT Film as Liquid Sensor (Ag:CNT 인쇄박막 액체 센서의 위험유해물질 검출 특성)

  • Ko, Dongwan;Choi, Junseck;Lee, Sangtae;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • We fabricated a printed Ag:CNT film as a liquid sensor for the detection of HNS (hazardous and noxious substances) in seawater. The paste required for printing was prepared using Ag powder, MWCNTs (multi-walled carbon nanotubes), and an organic binder. The heat treatment process for binder removal was optimized. In order to confirm that the sensor was operational, the resistance change characteristics in brine (3.5%) and methanol (99.8%) were assessed at $20^{\circ}C$. EDL (electrical double layer) formation and redox reactivity were confirmed as the most important reactions affect each electrical property of sensor in brine and methanol. From these results, it was determined that printed Ag:CNT film can be applied as a sensor to detect HNS in seawater.

Case Study on the Effluent Guidelines of Foreign Cases for the Development of Hazardous Noxious Substances (HNS) from Marine Industrial Facilities Management Guidelines, Korea: Focusing on the US EPA Guidelines (국내 해양산업시설의 위험유해물질 배출 관리 지침개발을 위한 국외 사례 검토: US EPA 배출지침을 중심으로)

  • Ki-young Choi;Chang-joon Kim;Young-Il Kim;Won-Soo Kang;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.44-49
    • /
    • 2022
  • It is necessary to establish a marine environment management system in Korea for hazardous noxious substances (HNS) effluent from marine industrial facilities because the Marine Environment Management Act primarily focuses on pollution control from vessels and offshore man-made structures. In this study, we investigated the effluent guidelines of foreign cases focusing on the US Environmental Protection Agency (US EPA), which provides detailed information on the action levels and establishing principles for the industrial wastewater discharge of HNS. Based on the review, we also considered appropriate options for establishing new guidelines for Korea.

A Study of Emergency Response for the Leakage Accident of Hazardous and Noxious Substances in a Port (항만에서의 위험·유해물질(HNS) 누출사고 대응에 관한 연구)

  • Woo, Young Jin;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.32-38
    • /
    • 2016
  • In general, lots of containers including various dangerous materials are transported to the port located in big cities such as Busan where massive residents live. Thus, it's really important how to make the emergency response for the leak accidents of dangerous materials and evaluate the direct or indirect damages to adjacent areas. In this study, in order to make reasonable emergency plans, CA (Consequence Analysis) is employed after selecting a key hazardous and noxious material, hydrogen fluroide. This material accounts for the third largest portion of cargo volume among all dangerous materials and can cause a huge damage in case of leakages. As a case study, Busan North port is selected as a test port since the portion of dangerous materials is higher than that of other ports in Busan. It is assumed that 1 ton of hydrogen fluoride is spilled at Busan North port. CA is performed to assess the impact of this accident. Throughout CA, the ERPG-2 range of a leak accident can be evaluated and this result can be used for decision making tools for mitigating the impact of a leak accident. To mitigate the damage of this accident, suitable a protective equipment and resident evacuation procedures should be prepared. Finally, this study can provide a systematic approach to make the emergency plan for reducing economical and personal losses.