• Title/Summary/Keyword: Hasofer-Lind

Search Result 15, Processing Time 0.023 seconds

Probabilistic Analysis of Vertical Drains using Hasofer-Lind Reliability Index (신뢰성지수를 이용한 연직배수공법의 확률론적 해석)

  • Kim, Seong-Pil;Heo, Joon;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • The conventional factor of safety as used in geotechnical engineering does not reflect the degree of uncertainty of the relevant parameters. Then in the geotechnical engineering, there have been efforts to reflect the uncertainties of the geotechnical properties through probabilistic analysis. In this study, a practical method for probabilistic analysis using the Hasofer-Lind reliability index is introduced. The method is based on the perspective of an ellipsoid that just touches the failure surface in the original space of the variables. The method is applied to prefabricated vertical drains (PVD) and compared with the result of Monte Carlo Simulation method.

A Study on Reliability Based Design Criteria for the Steel Highway Bridge (강도로교(鋼道路橋)의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(硏究))

  • Cho, Hyo Nam;Kim, Woo Seok;Lee, Cheung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 1985
  • This study proposes a reliability based design criteria for the steel bridge (H-beam, plate-girder and composite-beam), which is most common type of steel bridge, and also proposes the theoretical bases of nominal safety factors as well as load and rasistance factors based on the reliability theory. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM (Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the safety pravisions of the current steel bridge design code. Galambo's theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistences by LRFD Format and SGST Format, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. It may be concluded that the proposed LRFD reliability based design provisions for the steel highway bridge give more rational design than the current standard code for steel highway bridge.

  • PDF

Probabilistic failure analysis of underground flexible pipes

  • Tee, Kong Fah;Khan, Lutfor Rahman;Chen, Hua-Peng
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.167-183
    • /
    • 2013
  • Methods for estimating structural reliability using probability ideas are well established. When the residual ultimate strength of a buried pipeline is exceeded the limit, breakage becomes imminent and the overall reliability of the pipe distribution network is reduced. This paper is concerned with estimating structural failure of underground flexible pipes due to corrosion induced excessive deflection, buckling, wall thrust and bending stress subject to externally applied loading. With changes of pipe wall thickness due to corrosion, the moment of inertia and the cross-sectional area of pipe wall are directly changed with time. Consequently, the chance of survival or the reliability of the pipe material is decreased over time. One numerical example has been presented for a buried steel pipe to predict the probability of failure using Hasofer-Lind and Rackwitz-Fiessler algorithm and Monte Carlo simulation. Then the parametric study and sensitivity analysis have been conducted on the reliability of pipeline with different influencing factors, e.g. pipe thickness, diameter, backfill height etc.

Reliability-Based Design of Sight Distance, a Revisit (신뢰성을 고려한 도로 시거 설계의 제고)

  • Lee, Seul-Gi;Lee, Yong-Jae;Kim, Sang-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.121-131
    • /
    • 2006
  • Considering characteristics of drivers and vehicles with proper and reliable ways in highway design Procedures can ensure high level of highway safety. However, it is almost impossible to take into account all factors of drivers and vehicles influencing on the highway safety because of their uncertain and random nature. To detour the dead-end, the nature are usually assumed as simple homogeneous and deterministic one. Although the restricted assumption makes the system simple, it can produce serious problems due to lack of considering variability in the system. This paper develops a reliability-based method for determining stopping sight distance(SSD) and intersection sight distance (ISD), which are crucial elements in highway alignment design. In the study, Hasofer-Lind method is adopted. which is a well-known first-order second moment reliability method (AFOSM) The results in this study show that if mean, variance, and distribution of a particular driver-vehicle parameter are known, more reliable sight distances can be applied in highway design procedures because we can reflect uncertainties and randomness. Thus, the Probabilistic method could be adopted in designing the sight distance(s) with the desired reliability level.

Reliability analysis of slopes stabilised with piles using response surface method

  • Saseendran, Ramanandan;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.513-525
    • /
    • 2020
  • Slopes stabilised with piles are seldom analysed considering uncertainties in the parameters of the pile-slope system. Reliability analysis of the pile-slope system quantifies the degree of uncertainties and evaluates the safety of the system. In the present study, the reliability analysis of a slope stabilised with piles is performed using the first-order reliability method (FORM) based on Hasofer-Lind approach. The implicit performance function associated with the factor of safety (FS) of the slope is approximated using the response surface method. The analyses are carried out considering the design matrices formulated based on both the 2k factorial design augmented with a centre run (2k fact-centred design) and face-centered cube design (FCD). The finite element method is used as the deterministic model to compute the FS of the pile-slope system. Results are compared with the results of the Monte Carlo simulation. It is observed that the optimum location of the row of piles is at the middle of the slope to achieve the maximum FS. The results show that the reliability of the system is not uniform for different pile configurations, even if the system deterministically satisfies the target factor of safety (FSt) criterion. The FSt should be selected judiciously as it is observed that the reliability of the system changes drastically with the FSt level. The results of the 2k fact-centred design and FCD are in good agreement with each other. The procedure of the FCD is computationally costly and hence the use of 2k fact-centred design is recommended, provided the response of the system is sufficiently linear over the factorial space.

A Study on the Probabilistic Stability Analysis of Slopes (확률론적 사면안정 해석기법에 관한 연구)

  • Kim, Ki-Young;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.101-111
    • /
    • 2006
  • Slope stability analysis is a geotechnical engineering problem characterized by many sources of uncertainty. Some of them are connected to the variability of soil properties involved in the analysis. In this paper, a numerical procedure of probabilistic analysis of slope stability is presented based on Spencer's method of slices. The deterministic analysis is extended to a probabilistic approach that accounts fur the uncertainties and spatial variation of the soil parameters. The procedure is based on the first-order reliability method to compute the Hasofer-Lind reliability index and Monte-Carlo Simulation. A probabilistic stability assessment was performed to obtain the variation of failure probability with the variation of soil parameters in homogeneous and layered slopes as an example. The examples give insight into the application of uncertainty treatment to the slope stability and show the impact of the spatial variability of soil properties on the outcome of a probabilistic assessment.

Development of Load Factors-Based Analysis Model of Optimum Reliability (하중계수에 기초한 최적신뢰성의 해석모델 개발)

  • 이증반;신형우
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.113-124
    • /
    • 1992
  • This study proposes a Load Factors-based Analysis Model of Optimum Reliability for the High way bridge, which is most common type of structural design, and also proposes the theoretical bases of optimum nominal safety factors as well as optimum load and resistance factors based on the expected total cost minimization. Major 2nd moment reliability analysis and design theories including both MFOSM(Mean First Order 2nd Moment) Methods and AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability for mula are well suited for the proposed optimum reliability study.

  • PDF

Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm

  • Hamrouni, Adam;Dias, Daniel;Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.937-945
    • /
    • 2018
  • A probabilistic study of a reinforced earth wall in a frictional soil using the surface response methodology (RSM) is presented. A deterministic model based on numerical simulations is used (Abdelouhab et al. 2011, 2012b) and the serviceability limit state (SLS) is considered in the analysis. The model computes the maximum horizontal displacement of the wall. The response surface methodology is utilized for the assessment of the Hasofer-Lind reliability index and is optimized by the use of a genetic algorithm. The soil friction angle and the unit weight are considered as random variables while studying the SLS. The assumption of non-normal distribution for the random variables has an important effect on the reliability index for the practical range of values of the wall horizontal displacement.

A study on Reliability Analysis for Plane Frame Structure (평면뼈대구조의 신뢰성해석에 관한연구)

  • 이중빈;신형우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.34-39
    • /
    • 1989
  • Recent trends in design standards development have encouraged the use of probabilistic limit sate design concepts. Reliability analysis adopted in those advanced countries have the potentials that they afford for symplifying the design Process arid placing it on a consistent reliability based for various construction materials. This study is proposed in the reliability analysis of plane frame structures using second-order moment method(Level-II they). Lind-Hasofer's minimum distance method is use in the derivation of an mathematical algorithm as well as an determination of Correlation cofficients, reliability index and total reliability index depending on the multiple failure modes. In addition. This study is employed as a practical tool for the approximate reliability analysis. Results of the numerincal analysis showed that the difference between the reliability index of the failure probability of the multiple failure modes and the total reliability index of the failure probability with the simultaneous failure modes deviated nearly 3∼10% depending on tile performance functions.

  • PDF

Enhancement of Computational Efficiency of Reliability Optimization Method by Approximate Evaluation of Sub-Optimization Problem (부 최적화 문제의 근사적인 계산을 통한 신뢰도 최적설계 방범의 효율개선)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1597-1604
    • /
    • 2001
  • Alternative computational scheme is presented fur reliability based optimal design using a modified advanced first order second moment (AFOSH) method. Both design variables and design parameters are considered as random variables about their nominal values. Each probability constraint is transformed into a sub -optimization problem and then is resolved with the modified Hasofer- Lind-Rackwitz-Fiessler (HL-RF) method for computational efficiency and convergence. A method of design sensitivity analysis for probability constraint is presented and tested through simple examples. The suggested method is examined by solving several examples and the results are compared with those of other methods.