DOI QR코드

DOI QR Code

Reliability analysis of slopes stabilised with piles using response surface method

  • Saseendran, Ramanandan (Geotechnical Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras) ;
  • Dodagoudar, G.R. (Geotechnical Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras)
  • Received : 2020.03.03
  • Accepted : 2020.04.28
  • Published : 2020.06.25

Abstract

Slopes stabilised with piles are seldom analysed considering uncertainties in the parameters of the pile-slope system. Reliability analysis of the pile-slope system quantifies the degree of uncertainties and evaluates the safety of the system. In the present study, the reliability analysis of a slope stabilised with piles is performed using the first-order reliability method (FORM) based on Hasofer-Lind approach. The implicit performance function associated with the factor of safety (FS) of the slope is approximated using the response surface method. The analyses are carried out considering the design matrices formulated based on both the 2k factorial design augmented with a centre run (2k fact-centred design) and face-centered cube design (FCD). The finite element method is used as the deterministic model to compute the FS of the pile-slope system. Results are compared with the results of the Monte Carlo simulation. It is observed that the optimum location of the row of piles is at the middle of the slope to achieve the maximum FS. The results show that the reliability of the system is not uniform for different pile configurations, even if the system deterministically satisfies the target factor of safety (FSt) criterion. The FSt should be selected judiciously as it is observed that the reliability of the system changes drastically with the FSt level. The results of the 2k fact-centred design and FCD are in good agreement with each other. The procedure of the FCD is computationally costly and hence the use of 2k fact-centred design is recommended, provided the response of the system is sufficiently linear over the factorial space.

Keywords

References

  1. ABAQUS/CAE (2014), ABAQUS/CAE User's Guide, Dassault Systemes, Providence, Rhode Island, U.S.A.
  2. Ausilio, E., Conte, E. and Dente, G. (2001), "Stability analysis of slopes reinforced with piles", Comput. Geotech., 28(8), 591-611. https://doi.org/10.1016/S0266-352X(01)00013-1.
  3. Babu, G.L.S. and Singh, V.P. (2010), "Reliability analysis of a prototype soil nail wall using regression models", Geomech. Eng., 2(2), 71-88. https://doi.org/10.12989/gae.2010.2.2.071.
  4. Cai, F. and Ugai, K. (2000), "Numerical analysis of the stability of a slope reinforced with piles", Soils Found., 40(1), 73-84. https://doi.org/10.3208/sandf.40.73.
  5. Carrubba, P., Maugeri, M. and Motta, E. (1989), "Esperienze in vera grandezza sul comportamento di pali per la stabilizzaaione di un pendio", Proceedings of the 17th Convegno Nazionale di Geotechnica, Taromina, Italy, June.
  6. Chan, C.L. and Low, B.K. (2012), "Practical second-order reliability analysis applied to foundation engineering", Int. J. Numer. Anal. Meth. Geomech., 36(11), 1387-1409. https://doi.org/10.1002/nag.1057.
  7. Chen, L.T. and Poulos, H.G. (1997), "Piles subjected to lateral soil movements", J. Geotech. Geoenviron. Eng., 123(9), 802-811. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(802).
  8. Ellis, E.A., Durrani, I.K. and Reddish, D.J. (2010), "Numerical modelling of discrete pile rows for slope stability and generic guidance for design", Geotechnique, 60(3), 185-195. https://doi.org/10.1680/geot.7.00090.
  9. Eschenbach, T.G. (1992), "Spiderplots versus tornado diagrams for sensitivity analysis", Interfaces, 22(6), 40-46. https://doi.org/10.1287/inte.22.6.40.
  10. Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.
  11. GuhaRay, A. and Baidya, D.K. (2014), "Partial safety factors for retaining walls and slopes: A reliability based approach", Geomech. Eng., 6(2), 99-115. https://doi.org/10.12989/gae.2014.6.2.099.
  12. Guo, W.D. and Ghee, E.H. (2004), "Response of free-head piles due to lateral soil movement", Proceedings of the 9th Australia New Zealand Conference on Geomechanics, Auckland, New Zealand, February.
  13. Hamby, D.M. (1994), "A review of techniques for parameter sensitivity analysis of environmental models", Environ. Monit. Assess., 32(2), 135-154. https://doi.org/10.1007/BF00547132.
  14. Hamrouni, A., Dias, D. and Sbartai, B. (2018), "Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm", Geomech. Eng., 15(4), 937-945. https://doi.org/10.12989/gae.2018.15.4.937.
  15. Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Div., 100(1), 111-121. https://doi.org/10.1061/JMCEA3.0001848
  16. Hassiotis, S., Chameau, J.L. and Gunaratne, M. (1997), "Design method for stabilization of slopes with piles", J. Geotech. Geoenviron. Eng., 123(4), 314-323. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(314).
  17. He, Y., Hazarika, H., Yasufuku, N., Teng, J., Jiang, Z. and Han, Z. (2015), "Estimation of lateral force acting on piles to stabilize landslides", Nat. Hazards, 79(3), 1981-2003. https://doi.org/10.1007/s11069-015-1942-0.
  18. Ho, I. (2014), "Parametric studies of slope stability analyses using three-dimensional finite element technique: Geometric effect", J. GeoEng., 9(1), 33-43. http://doi.org/10.6310/jog.2014.9(1).4.
  19. Ho, I. (2015), "Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer", Int. J. Geomech., 15(5), 234-249. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000445.
  20. Ho, I. (2017), "Three-dimensional finite element analysis for soil slopes stabilisation using piles", Geomech. Geoeng., 12(4), 234-249. https://doi.org/10.1080/17486025.2017.1347286.
  21. Ito, T. and Matsui, T. (1975), "Methods to estimate lateral force acting on stabilizing piles", Soils Found., 15(4), 43-59. https://doi.org/10.3208/sandf1972.15.4_43.
  22. Ito, T., Matsui, T. and Hong, W.P. (1981), "Design method for stabilizing piles against landslide - one row of piles", Soils Found., 21(1), 21-37. https://doi.org/10.3208/sandf1972.21.21.
  23. Ji, J. and Low, B.K. (2012), "Stratified response surfaces for system probabilistic evaluation of slopes", J. Geotech. Geoenviron. Eng., 138(11), 1398-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000711.
  24. Joorabchi, A.E. (2011), "Landslide stabilization using drilled shaft in static and dynamic condition", Ph.D. Dissertation, The University of Akron, Akron, Ohio, U.S.A.
  25. Kolmogorov, A.N. (1933), "Sulla determinazione empirica di una legge di distribuzione", Giornale dell'Istituto Italiano degli Attuari, 4, 83-91.
  26. Lee, B.J., Kee, S., Oh, T. and Kim, Y. (2017), "Evaluating the dynamic elastic modulus of concrete using shear-wave velocity measurements", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2017/1651753.
  27. Lee, C.Y., Hull, T.S. and Poulos, H.G. (1995), "Simplified pileslope stability analysis", Comput. Geotech., 17(1), 1-16. https://doi.org/10.1016/0266-352X(95)91300-S.
  28. Li, D., Zheng, D., Cao, Z., Tang, X. and Phoon, K. (2016), "Response surface methods for slope reliability analysis: Review and comparison", Eng. Geol., 203, 3-14. https://doi.org/10.1016/j.enggeo.2015.09.003.
  29. Li, L. and Liang, R.Y. (2014), "Reliability-based design for slopes reinforced with a row of drilled shafts", Int. J. Numer. Anal. Meth. Geomech., 38(2), 202-220. https://doi.org/10.1002/nag.2220.
  30. Li, X., He, S., Luo, Y. and Wu, Y. (2011), "Numerical studies of the position of piles in slope stabilization", Geomech. Geoeng., 6(3), 209-215. https://doi.org/10.1080/17486025.2011.578668.
  31. Li, X., Pei, X., Gutierrez, M. and He, S. (2012), "Optimal location of piles in slope stabilization by limit analysis", Acta Geotechnica, 7(3), 253-259. https://doi.org/10.1007/s11440-012-0170-y.
  32. Li, X., Su, L., He, S. and Xu, J. (2015), "Limit equilibrium analysis of seismic stability of slopes reinforced with a row of piles", Int. J. Numer. Anal. Meth. Geomech., 40(8), 1241-1250. https://doi.org/10.1002/nag.2484.
  33. Loucks, D.P. and Van Beek, E. (2017), Water Resource Systems Planning and Management: An Introduction to Methods, Models and Applications, Springer, Cham, Zug, Switzerland.
  34. Mandali, A.M., Sujith, M.S., Rao, B.N. and Maganti, J. (2011), "Reliability analysis of counterfort retaining walls", Electron. J. Struct. Eng., 11(1), 42-56.
  35. Mangalathu, S., Jeon, J. and DesRoches, R. (2018), "Critical uncertainty parameters influencing seismic performance of bridges using lasso regression", Earthq. Eng. Struct. Dyn., 47(3), 784-801. https://doi.org/10.1002/eqe.2991.
  36. McGann, C.R., Arduino, P. and Mackenzie-Helnwein, P. (2012), "Simplified procedure to account for a weaker soil layer in lateral load analysis of single piles", J. Geotech. Geoenviron. Eng., 138(9), 1129-1137. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000684.
  37. Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., Hoboken, New Jersey, U.S.A.
  38. Ni, P., Mangalathu, S. and Liu, K. (2020), "Enhanced fragility analysis of buried pipelines through lasso regression", Acta Geotechnica, 15(2), 471-487. https://doi.org/10.1007/s11440-018-0719-5.
  39. Ni, P., Mangalathu, S. and Yi, Y. (2018a), "Fragility analysis of continuous pipelines subjected to transverse permanent ground deformation", Soils Found., 58(6), 1400-1413. https://doi.org/10.1016/j.sandf.2018.08.002.
  40. Ni, P., Mangalathu, S., Mei, G. and Zhao, Y. (2017), "Permeable piles: An alternative to improve the performance of driven piles", Comput. Geotech., 84, 78-87. https://doi.org/10.1016/j.compgeo.2016.11.021.
  41. Ni, P., Mei, G. and Zhao, Y. (2018b), "Influence of raised groundwater level on the stability of unsaturated soil slopes", Int. J. Geomech., 18(12), 04018168. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001316.
  42. Ni, P., Song, L., Mei, G. and Zhao, Y. (2018c), "On predicting displacement-dependent earth pressure for laterally loaded piles", Soils Found., 58(1), 85-96. https://doi.org/10.1016/j.sandf.2017.11.007.
  43. Ni, P., Wang, S., Zhang, S. and Mei, L. (2016), "Response of heterogeneous slopes to increased surcharge load", Comput. Geotech., 78, 99-109. http://doi.org/10.1016/j.compgeo.2016.05.007.
  44. Nian, T.K., Chen, G.Q., Luan. M.T., Yang, Q. and Zheng, D.F. (2008), "Limit analysis of the stability of slopes reinforced with piles against landslide in nonhomogenous and anisotropic soils", Can. Geotech. J., 45(8), 1092-1103. https://doi.org/10.1139/T08-042.
  45. Nowak, A.S. and Collins, K.R. (2013), Reliability of Structures, CRC Press, Boca Raton, Florida, U.S.A.
  46. Phoon, K. and Kulhawy, F.H. (1999), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  47. Poulos, H.G. (1995), "Design of reinforcing piles to increase slope stability", Can. Geotech. J., 32(5), 808-818. https://doi.org/10.1139/t95-078.
  48. Ruiz, S.E. (1984), "Reliability index for offshore piles subjected to bending", Struct. Safety, 2(2), 83-90. https://doi.org/10.1016/0167-4730(84)90012-2.
  49. Sayed, S., Dodagoudar, G.R. and Rajagopal, K. (2010), "Finite element reliability analysis of reinforced retaining walls", Geomech. Geoeng., 5(3), 187-197. https://doi.org/10.1080/17486020903576788.
  50. Shin, E.C., Patra, C.R. and Rout, A.K. (2006), "Automated stability analysis of slopes stabilized with piles", KSCE J. Civ. Eng., 10(5), 333-338. https://doi.org/10.1007/BF02830087.
  51. Smethurst, J.A. and Powrie, W. (2007), "Monitoring and analysis of the bending behaviour of discrete piles used to stabilise a railway embankment", Geotechnique, 57(8), 663-677. https://doi.org/10.1680/geot.2007.57.8.663.
  52. Smirnov, N.V. (1939), "Estimate of deviation between empirical distribution functions in two independent samples", Bull. Moscow Univ., 2(2), 3-16.
  53. Tu, Y., Liu, X., Zhong, Z. and Li, Y. (2016), "New criteria for defining slope failure using the strength reduction method", Eng. Geol., 212, 63-71. https://doi.org/10.1016/j.enggeo.2016.08.002.
  54. Wei, W.B. and Cheng, Y.M. (2009), "Strength reduction analysis for slope reinforced with one row of piles", Comput. Geotech., 36(7), 1176-1185. https://doi.org/10.1016/j.compgeo.2009.05.004.
  55. Won, J., You, K., Jeong, S. and Kim, S. (2005), "Coupled effects in stability analysis of pile-slope systems", Comput. Geotech., 32(4), 304-315. https://doi.org/10.1016/j.compgeo.2005.02.006.
  56. Xu, J., Li, Y. and Yang, X. (2018), "Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope", Geomech. Eng., 14(1), 71-81. https://doi.org/10.12989/gae.2018.14.1.071.
  57. Yang, X.L. and Li, W.T. (2017), "Reliability analysis of shallow tunnel with surface settlement", Geomech. Eng., 12(2), 313-326. https://doi.org/10.12989/gae.2017.12.2.313.
  58. Yang, X.L. and Liu, Z.A. (2018), "Reliability analysis of threedimensional rock slope", Geomech. Eng., 15(6), 1183-1191. https://doi.org/10.12989/gae.2018.15.6.1183.
  59. Yu, Y., Shang, Y. and Sun, H. (2014), "A theoretical method to predict crack initiation in stabilizing piles", KSCE J. Civ. Eng., 18(5), 1332-1341. https://doi.org/10.1007/s12205-014-0063-8.
  60. Zhang, B., Ma, Z., Wang, X., Zhang, J. and Peng, W. (2020), "Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method", Geomech. Eng., 20(1), 43-54. https://doi.org/10.12989/gae.2020.20.1.043.
  61. Zhang, J., Huang, H.W., Juang, C.H. and Li, D.Q. (2013), "Extension of Hassan and Wolff method for system reliability analysis of soil slopes", Eng. Geol., 160, 81-88. https://doi.org/10.1016/j.enggeo.2013.03.029.
  62. Zhang, J., Wang, H., Huang, H.W. and Chen, L.H. (2017), "System reliability analysis of soil slopes stabilized with piles", Eng. Geol., 229, 45-52. https://doi.org/10.1016/j.enggeo.2017.09.009.
  63. Zhou, C., Shao, W. and van Westen, C.J. (2014), "Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges reservoir, China", Eng. Geol., 173, 41-53. https://doi.org/10.1016/j.enggeo.2014.02.004.
  64. Zhu, J.Q. and Yang, X.L. (2018), "Probabilistic stability analysis of rock slopes with cracks", Geomech. Eng., 16(6), 655-667. https://doi.org/10.12989/gae.2018.16.6.655.
  65. Zienkiewicz, O.C., Humpheson, C. and Lewis, R.W. (1975), "Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, 25(4), 671-689. https://doi.org/10.1680/geot.1975.25.4.671.