• Title/Summary/Keyword: Hash-Based RFID Authentication Protocol

Search Result 44, Processing Time 0.032 seconds

A Storage and Computation Efficient RFID Distance Bounding Protocol (저장 공간 및 연산 효율적인 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Bu, Ki-Dong;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1350-1359
    • /
    • 2010
  • Recently many researchers have been proved that general RFID system for proximity authentication is vulnerable to various location-based relay attacks such as distance fraud, mafia fraud and terrorist fraud attacks. The distance-bounding protocol is used to prevent the relay attacks by measuring the round trip time of single challenge-response bit. In 2008, Munilla and Peinado proposed an improved distance-bounding protocol applying void-challenge technique based on Hancke-Kuhn's protocol. Compare with Hancke-Kuhn's protocol, Munilla and Peinado's protocol is more secure because the success probability of an adversary has (5/8)n. However, Munilla and Peinado's protocol is inefficient for low-cost passive RFID tags because it requires large storage space and many hash function computations. Thus, this paper proposes a new RFID distance-bounding protocol for low-cost passive RFID tags that can be reduced the storage space and hash function computations. As a result, the proposed distance-bounding protocol not only can provide both storage space efficiency and computational efficiency, but also can provide strong security against the relay attacks because the adversary's success probability can be reduced by $(5/8)^n$.

Verification of a Function-based Security Authentication Protocol for Implantable Medical Devices (함수 기반의 체내 삽입장치용 보안 인증프로토콜 검증)

  • Bae, WooSik;Han, KunHee
    • Journal of Digital Convergence
    • /
    • v.12 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Recent advancement of USN technology has lent itself to the evolving communication technology for implantable devices in the field of medical service. The wireless transmission section for communication between implantable medical devices and patients is a cause of concern over invasion of privacy, resulting from external attackers' hacking and thus leakage of private medical information. In addition, any attempt to manipulate patients' medical information could end up in serious medical issues. The present study proposes an authentication protocol safe against intruders' attacks when RFID/USN technology is applied to implantable medical devices. Being safe against spoofing, information exposure and eavesdropping attacks, the proposed protocol is based on hash-function operation and adopts session keys and random numbers to prevent re-encryption. This paper verifies the security of the proposed protocol using the formal verification tool, Casper/FDR.

A Lightweight Mutual Authentication Protocol based Hash Chain for RFID Systems (RFID을 위한 해시 체인 기반을 이용한 경량화 상호 인증 프로토콜)

  • Lee, Gi-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.393-396
    • /
    • 2010
  • 이 시스템은 무선 주파수와 RFID 태그 사용으로 불법적인 위변조, 도��, 추적, 프라이버시 침해 등은 불가피하다. 따라서 본 논문에서는 리더와 태그 및 데이터베이스 간에 해시 체인을 이용하여 키를 생성한다. 키 정보를 전송 메시지에 추가하지 않기 때문에 공격자는 키를 획득할 수 없으며 간단한 논리 연산과 카운터만을 사용하기 때문에 저전력 RFID 시스템에 적합하다.

  • PDF

A RFID Multi-Authentication Method for Logistics Systems (물류 시스템에 적합한 RFID 다중 인증방법)

  • Bae, Woo-Sik;Lee, Jong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.313-319
    • /
    • 2009
  • Recently the RFID system, which can recognize multiple tags simultaneously through wireless communication, is emerging as a new technology that can replace the barcode system. Furthermore, related industries are carrying out active research on tags and authentication protocols with guaranteed security that are widely applicable to logistics, distribution, etc. The present study proposes a protocol with enhanced security by introducing the concept of RBAC to the authentication protocol, and a method with lower security for effective mass authentication. The proposed method is advantageous in that it guarantees security against spoofing attack, traffic analysis, replay attack, etc. based on hash function.

Elliptic Curve Signcryption Based Security Protocol for RFID

  • Singh, Anuj Kumar;Patro, B.D.K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.344-365
    • /
    • 2020
  • Providing security has been always on priority in all areas of computing and communication, and for the systems that are low on computing power, implementing appropriate and efficient security mechanism has been a continuous challenge for the researchers. Radio Frequency Identification (RFID) system is such an environment, which requires the design and implementation of efficient security mechanism. Earlier, the security protocols for RFID based on hash functions and symmetric key cryptography have been proposed. But, due to high strength and requirement of less key size in elliptic curve cryptography, the focus of researchers has been on designing efficient security protocol for RFID based on elliptic curves. In this paper, an efficient elliptic curve signcryption based security protocol for RFID has been proposed, which provides mutual authentication, confidentiality, non-repudiation, integrity, availability, forward security, anonymity, and scalability. Moreover, the proposed protocol successfully provides resistance from replay attack, impersonation attack, location tracking attack, de-synchronization attack, denial of service attack, man-in-the-middle attack, cloning attack, and key-compromise attack. Results have revealed that the proposed protocol is efficient than the other related protocols as it takes less computational time and storage cost, especially for the tag, making it ideal to be used for RFID systems.

A Strong RFID Authentication Protocol Based on Synchronized Secret Information (비밀정보 동기화에 기반한 Strong RFID 인증)

  • Ha, Jae-Cheol;Ha, Jung-Hoon;Park, Jea-Hoon;Moon, Sang-Jae;Kim, Hwan-Koo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.5
    • /
    • pp.99-109
    • /
    • 2007
  • Lee et al. recently proposed an RFID mutual authentication scheme based on synchronized secret information. However, we found that their protocol is vulnerable to a spoofing attack in which an adversary can impersonate a legal tag to the reader by sending a malicious random number. To remedy this vulnerability, we propose two RFID authentication protocols which are secure against all possible threats including backward and forward traceability. Furthermore, one of the two proposed protocols requires only three hash operations(but, $[m/2]{\cdot}2+3$ operations in resynchronization state, m is the number of tags) in the database to authenticate a tag, hence it is well suitable fur large scale RFID systems.

Design of PUF-Based Encryption Processor and Mutual Authentication Protocol for Low-Cost RFID Authentication (저비용 RFID 인증을 위한 PUF 기반 암호화 프로세서와 상호 인증 프로토콜 설계)

  • Che, Wonseok;Kim, Sungsoo;Kim, Yonghwan;Yun, Taejin;Ahn, Kwangseon;Han, Kijun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.831-841
    • /
    • 2014
  • The attacker can access the RFID systems illegally because authentication operation on the RFID systems are performed in wireless communication. Authentication methods based on the PUF were presented to defend attacks. Because of Hash and AES, the cost is expensive for the low-cost RFID tag. In this paper, the PUF-based encryption processor and the mutual authentication protocol are proposed for low-cost RFID authentication. The challenge-response pairs (PUF's input and output) are utilized as the authentication key and encrypted by the PUF's characteristics. The encryption method is changed each session and XOR operation with random number is utilized. Therefore, it is difficult for the attacker to analyze challenge-response pairs and attack the systems. In addition, the proposed method with PUF is strong against physical attacks. And the method protects the tag cloning attack by physical attacks because there is no authentication data in the tag. Proposed processor is implemented at low cost with small footprint and low power.

A Light-Weight RFID Distance Bounding Protocol (경량 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Bu, Ki-Dong;Yoon, Eun-Jun;Nam, In-Gil
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Recently, it is proved that contactless smart-card based RFID tags, which is used for proximity authentication, are vulnerable to relay attacks with various location-based attacks such as distance fraud, mafia fraud and terrorist fraud attacks. Moreover, distance bounding protocols have been researched to prevent these relay attacks that can measure the message transmitted round-trip time between the reader and the tag. In 2005, Hancke and Kuhn first proposed an RFID distance bounding protocol based on secure hash function. However, the Hancke-Kuhn protocol cannot completely prevent the relay attacks because an adversary has (3/4)$^n$ attack success probability. Thus, this paper proposes a new distance-bounding protocol for light-weight RFID systems that can reduce to (5/8)$^n$ for the adversary's attack success probability. As a result, the proposed protocol not only can provide high-space efficient based on a secure hash function and XOR operation, but also can provide strong security against the relay attacks because the adversary's attack success probability is optimized to (5/8)$^n$.

Secure and Efficient Database Searching in RFID Systems using Tag-Grouping Based on Hash-Chain (RFID 시스템에서 Hash-Chain기반 Tag-Grouping을 이용한 안전하고 효율적인 데이터베이스 검색)

  • Lee, Byeung-Ju;Song, Chang-Woo;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.9-17
    • /
    • 2009
  • RFID (Radio Frequency Identification) is a next generation technology that will replace barcode. RFID can identify an object by reading ID inside a RFID tag using radio frequency. However, because a RFID tag replies its unique ID to the request of any reader through wireless communication, it is vulnerable to attacks on security or privacy through wiretapping or an illegal reader's request. The RFID authentication protocol has been studied actively in order to solve security and privacy problems, and is used also in tag search. Recently, as the number of tags is increasing in RFTD systems and the cost of data collection is also rising, the importance of effective tag search is increasing. This study proposed an efficient search method that solved through ta9 group the problem of large volume of database computation in Miyako Ohkubo's hash chain mechanism, which meets requirements for security and privacy protection. When we searched first the group of tags with access rate of 5 or higher in a database with 100,000 records, search time decreased by around 30%.

A Randomized Hash-Based Interactive RFID Authentication Protocol against Spoofing Attack (스푸핑 공격에 안전한 랜덤 해쉬기반 양방향 RFID 인증 프로토콜)

  • Lee Jong-Ha;Nam Kil-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.1-3
    • /
    • 2005
  • 기존의 RFID 인증 프로토콜은 트래킹 공격이나 스푸핑 공격에 취약하다는 단점을 가지고 있다. 특히 해쉬기반이나 랜덤 해쉬기반 RFID 인증 프로토콜은 스푸핑 공격으로 인하여 태그와 리더간의 인증이 안전하지 못한 프로토콜이며 해쉬체인 RFID 인증 프로토콜은 리더인증이 곤란한 일방향 인증 프로토콜이다. 본 논문에서 제안하는 프로토콜은 해쉬함수와 RNG(난수생성기)만을 사용하기 때문에 저가의 수동형 RFID 시스템에서 구현이 가능할 뿐만 아니라, 트래킹 공격과 스푸핑 공격에 안전하고, 태그와 리더간의 양방향 인증이 가능한 RFID 인증 프로토콜이다.

  • PDF