• Title/Summary/Keyword: Harsh environments

Search Result 228, Processing Time 0.021 seconds

Retail functions and skills of venture merchants: A case study of Lunuganga

  • CHO, Myungrae
    • Journal of Distribution Science
    • /
    • v.19 no.3
    • /
    • pp.5-14
    • /
    • 2021
  • Purpose: This study aims to clarify the behavioral extraction and ability of venture merchants, who actively challenge commerce in the face of harsh living environments. Research design, data and methodology: Adopting the concept of retail functions and retail skills, this study examines how venture merchants perform retail functions, and identifies the required retail skills. This study analyzed primary data obtained through an interview with a bookstore called Lunuganga. Results: The venture merchant purchases products based on his self-assertion and creates an original "store identification." Moreover, he draws a changing "own-store customers image" and acquires "own-store customers," that is, customers acquired by him by building an original store identity. He sells products to "own-store customers" who identify with the store. The retail skills identified as required by venture merchants to carry out such retail functions were "skill to draw a store identification" and "skill to draw own-store customer image." Conclusions: Venture merchants' unique retail functions and retail skills suggest a new basis for the existence of small and medium-sized retailers. It is necessary to build a generalized theoretical hypothesis model by refining the concept presented in this paper by repeating research targeting venture merchants in the same industry and different industries.

Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel (스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계)

  • Park, Youngju;Yu, Jinseok;Sim, Seong Gu;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.

Development of Ultrasonic Sediment-level Sensor for Sewage Pipe Application (하수관 퇴적물 감지를 위한 초음파 퇴적센서 개발)

  • Park, Buem-Keun;Shin, Jeong-Hee;Paik, Jong-Hoo;LEE, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-29
    • /
    • 2021
  • In this study, we successfully developed a highly reliable ultrasonic sediment sensor to detect the sediment levels in sewer pipes in harsh environments. The ultrasonic transducer employed in the ultrasonic sediment sensor was designed so as to possess a simple structure. The developed sensor was carefully optimized by simulating the electromechanical characteristics, radiated sound wave pressures, and directivity via finite element analysis. It was also designed to possess a simple mounting structure minimizing the flow disturbance in a 400-mm sewer pipe; additionally, eight ultrasonic transducers were arranged in a four-channel mode, allowing for measurement of the sediment height in five easy steps. Through experimental evaluations, we verified the performance of the ultrasonic sediment-level sensor and its industrial applicability. The results suggested that although the precision value was notably low at 15 mm, the sediment detection performance was adequate; therefore, the developed sensor can potentially be used in industrial applications.

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan;Choi, Junhyeok;Lee, Jeongwook;Cho, Yongmin;Kang, In-Jeong;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.410-416
    • /
    • 2022
  • Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

Design and Implementation of a Dynamic IoT Device Management System (동적 사물인터넷 장치 관리 시스템 설계 및 구현)

  • Wang, Xinghui;Moon, Nammee;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2021
  • With the development of the Internet of Things technology, new devices are being developed and used to provide various applications and services. Most IoT devices have a high probability of error because they operate in harsh environments with limited resources. In addition, it is necessary to manage the Internet of Things devices dynamically because new devices are constantly deployed. In this paper, we design a system that allows users to monitor the mounting of new devices to perform the necessary tasks and implement prototypes to validate their operability. Our system also provides a web-based programming interface to direct work on new modules and share work content with each other.

Similar and Dissimilar Welding Properties of Zirconium by TIG Welding (텅스텐아크용접에 의한 Zirconium의 동종 및 이종용접 특성 분석)

  • Kim, Jin Yeong;Hwang, Hyo-Woon;Lee, Dae Hyun;Lee, Jae Gwan;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.165-170
    • /
    • 2021
  • Zirconium has excellent mechanical strength and high heat resistance and excellent corrosion resistance, and it is very important to study zirconium's dissimilar welding properties since it can be used in various applications under harsh environments. Similar welding of pure zirconium and dissimilar metal welding of pure zirconium and pure titanium were performed by TIG welding, and the welding properties were studied in association with microstructural and mechanical properties. In the Zr/Zr welded specimen, sound FZ and HAZ regions showed a basketweave microstructure composed of plate α phase. FZ region of Zr/Ti dissimilar welded specimen exhibited a maximum hardness value of 354.8 Hv, which is about three times higher than that of Ti base metal, due to the precipitation of very fine metastable ω and α phases in the beta matrix. In addition, due to the microstructural continuity in the FZ and HAZ regions, excellent elongation property of 21% was exhibited.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Diversity and community structure of ectomycorrhizal mycorrhizal fungi in roots and rhizosphere soil of Abies koreana and Taxus cuspidata in Mt. Halla

  • Ji-Eun Lee;Ahn-Heum Eom
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.448-456
    • /
    • 2022
  • In this study, the roots and rhizosphere soil of Abies koreana and Taxus cuspidata were collected from sites at two different altitudes on Mt. Halla. Ectomycorrhizal fungi (EMF) were identified by Illumina MiSeq sequencing. The proportion of EMF from the roots was 89% in A. koreana and 69% in T. cuspidata. Among EMF in rhizosphere soils, the genus Russula was the most abundant in roots of A. koreana (p < 0.05). The altitude did not affect the biodiversity of EMF communities but influenced fungal community composition. However, the host plants had the most significant effect on EMF communities. The result of the EMF community analysis showed that even if the EMF were isolated from the same altitudes, the EMF communities differed according to the host plant. The community similarity index of EMF in the roots of A. koreana was higher than that of T. cuspidata (p < 0.05). The results show that both altitude and host plants influenced the structure of EMF communities. Conifers inhabiting harsh sub-alpine environments rely strongly on symbiotic relationships with EMF. A. koreana is an endangered species with a higher host specificity of EMF and climate change vulnerability than T. cuspidata. This study provides insights into the EMF communities, which are symbionts of A. koreana, and our critical findings may be used to restore A. koreana.

Development of Portable Boiler Tube Health Evaluation System (휴대용 보일러튜브 건전성 평가시스템 개발)

  • Chang Min Lee;Han Sang Lee;Bum Shin Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.101-108
    • /
    • 2023
  • Although the proportion of coal-fired power generation is decreasing, efficient operating technology is needed to continuously invest in facilities and reduce maintenance costs until it is abolished. Boilers, one of the main facilities of power plants, operate for a long time in harsh environments of high temperature and high pressure. In addition, damage due to deterioration is likely to occur depending on the fuel and tube material used. It is very important to judge soundness because damage caused by deterioration adversely affects facility operation. Previously, replication method was used to analyze the progress of deterioration. In the replication method, pre-treatment such as chemical treatment is performed on the boiler tube in the field, the area is reproduced by attaching a film, and the replicated film is determined by an expert in the laboratory with an expensive microscope. However, this method involves substantial costs and time requirements, as well as the possibility of human errors. To address these issues, we developed a mobile health assessment system in this research. Since it is detachable and takes images in real time, this system enables swift evaluations across a broad range and facilitates the assessment of preprocessing quality. In addition, it was intended to reduce existing human mistakes by developing a degradation classification algorithm using the merger cluster method.

Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

  • Hanjong Kim;Jaehoon Lee;Changwan Han;Seonghun Park
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.461-471
    • /
    • 2023
  • The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.