References
- Kong WS, Kim KO, Lee SG, et al. Distribution of high mountain plants and species vulnerability against climate change. J Environ Impact Assess. 2014;23(2):119-136. https://doi.org/10.14249/eia.2014.23.2.119
- Kim YS, Chang CS, Kim CS, et al. Abies koreana. The IUCN Red List of Threatened Species; 2011:e.T31244A9618913.
- Kong WS. Biogeography of native Korean pinaceae. J Geol Soc Korea. 2006;41:73-93.
- Kim NS, Lee HC. A study on changes and distributions of Korean fir in sub-alpine zone. J Korea Soc Environ Restor Technol. 2013;16(5):49-57.
- Cho MG, Chung JM, Jung HR, et al. Vegetation structure of Taxus cuspidata communities in subalpine zone. J Agric Life Sci. 2012;46:1-10.
- Ahn US, Kim DS, Yun YS, et al. The inference about the cause of death of korean fir in Mt. Halla through the analysis of spatial dying pattern-Proposing the possibility of excess soil moisture by climate changes. Korean J Agric for Meteorol. 2019;21:1-28.
- Pachauri RK, Allen MR, Barros VR, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: IPCC 2014.
- Bahram M, Polme S, Koljalg U, et al. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the hyrcanian forests of Northern Iran. New Phytol. 2012;193(2):465-473. https://doi.org/10.1111/j.1469-8137.2011.03927.x
- Sheik CS, Beasley WH, Elshahed MS, et al. Effect of warming and drought on grassland microbial communities. Isme J. 2011;5(10):1692-1700. https://doi.org/10.1038/ismej.2011.32
- Cairney JW, Meharg AA. Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot. 2002;80(8):803-809. https://doi.org/10.1139/b02-072
- Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. San Diego: Academic Press; 2010.
- Van Der Heijden MG, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11(3):296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
- Prieto I, Roldan A, Huygens D, et al. Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil. 2016;406(1-2):15-27. https://doi.org/10.1007/s11104-016-2860-y
- Sebastiana M, Martins J, Figueiredo A, et al. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza. 2017;27(2):109-128. https://doi.org/10.1007/s00572-016-0734-z
- Tedersoo L, May T, Smith M. Ectomycorrhizal lifestyle in fungi: patterns of evolution and distribution. Mycorrhiza. 2010;20(4):217-263. https://doi.org/10.1007/s00572-009-0274-x
- Kivlin SN, Emery SM, Rudgers JA. Fungal symbionts alter plant responses to global change. Am J Bot. 2013;100(7):1445-1457.
- Bennett AE, Classen AT. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias. Ecology. 2020;101(4):e02978.
- V€are H, Vestberg M, Ohtonen R. Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in Northern fennoscandia. Arct Antarct Alp. 1997;29(1):93-104.
- Korner C. The use of 'altitude'in ecological research. Trends Ecol Evol. 2007;22(11):569-574. https://doi.org/10.1016/j.tree.2007.09.006
- Fra˛c M, Hannula SE, Belka M, et al. Fungal biodiversity and their role in soil health. Front Microbiol. 2018;9:707.
- MacLean D, Jones JD, Studholme DJ. Application of' next-generation' sequencing technologies to microbial genetics. Nat Rev Microbiol. 2009;7(4):287-296.
- Bellemain E, Carlsen T, Brochmann C, et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189.
- Yoon SH, Ha SM, Kwon SJ, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67(5):1613-1617. https://doi.org/10.1099/ijsem.0.001755
- Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996-998. https://doi.org/10.1038/nmeth.2604
- Keylock C. Simpson diversity and the shannon-wiener index as special cases of a generalized entropy. Oikos. 2005;109(1):203-207. https://doi.org/10.1111/j.0030-1299.2005.13735.x
- Grandin U. PC-ORD version 5: a user-friendly toolbox for ecologists. Appl Veg Sci. 2006;17(6):843-844.
- Lee JE, Eom AH. Ectomycorrhizal fungal diversity on Abies korea and Taxus cuspidata at two altitudes in Mt. Halla. Kor J Mycol. 2019;47:199-208.
- Henkel TW, Aime MC, Uehling JK, et al. New species and distribution records of Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield. Mycologia. 2011;103(4):883-894. https://doi.org/10.3852/10-355
- Olariaga I, Jugo BM, Garcia-Etxebarria K, et al. Species delimitation in the european species of Clavulina (Cantharellales, Basidiomycota) inferred from phylogenetic analyses of ITS region and morphological data. Mycol Res. 2009;113(11):1261-1270. https://doi.org/10.1016/j.mycres.2009.08.008
- Kirk PM, Cannon PF, David J, et al. Ainsworth and bisby's dictionary of the fungi. 9th ed. UK: CABI Bioscience; 2001.
- Dahlberg A, Jonsson L, Nylund J-E. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce Forest in South Sweden. Can J Bot. 1997;75(8):1323-1335. https://doi.org/10.1139/b97-844
- Gardes M, Bruns T. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot. 1996; 74(10):1572-1583. https://doi.org/10.1139/b96-190
- Taylor D, Bruns T. Community structure of ectomycorrhizal fungi in a Pinus muricata Forest: minimal overlap between the mature Forest and resistant propagule communities. Mol Ecol. 1999;8(11):1837-1850. https://doi.org/10.1046/j.1365-294x.1999.00773.x
- Kim CS, Jo JW, Lee H, et al. Comparison of soil higher fungal communities between dead and living Abies koreana in Mt. Halla, the Republic Of Korea. Mycobiology. 2020;48(5):364-372. https://doi.org/10.1080/12298093.2020.1811193
- Song JH, Han SH, Lee SH, et al. Changes for stand structure of Abies koreana forest at the yeongsil area of Mt. Hallasan for six years (from 2011 to 2017). J Korean for Soc. 2019;108:1-9.
- Park JH, Choi EB, Kim YJ, et al. The associations of the cambial activities of Abies koreana and Taxus cuspidata in different diameter classes at the height of breast in the subalpine zone of Mt. Dukyou with the degree-days. KJEE. 2018;2:89.
- Oh SJ, Koh JG, Kim ES, et al. Diurnal and seasonal variation of chlorophyll fluorescence from Korean fir plants on Mt. Halla. Korean J Environ Biol. 2001;19:43-48.
- Lim JH, Woo SY, Kwon MJ, et al. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla. Kor J for Soc. 2006;95:705-710.
- Song KM, Kang YJ, Hyeon HJ. Vegetation structure at the slope direction and characteristic of seedlings of Abies koreana in hallasan Mountain. J Environ Sci Int. 2014;23(1):39-46. https://doi.org/10.5322/JESI.2014.23.1.39
- Kernaghan G, Currah R, Bayer R. Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot. 1997;75(11):1843-1850. https://doi.org/10.1139/b97-896
- Jarvis SG, Woodward S, Taylor AF. Strong attitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 2015;206:1145-1155. https://doi.org/10.1111/nph.13315
- Calef MP, David McGuire A, Epstein HE, et al. Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. J Biogeogr. 2005;32(5):863-878. https://doi.org/10.1111/j.1365-2699.2004.01185.x
- Gardes M, Dahlberg A. Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol. 1996;133(1):147-157.