• Title/Summary/Keyword: Harmonic vibration

Search Result 628, Processing Time 0.028 seconds

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.

An Experiment Study on the Chaos Phenomenon for a Rectangular Cantilever Beam (직사각형 외팔보의 혼돈현상에 대한 실험)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.567-571
    • /
    • 2005
  • The slender rectangular cantilever beam has vef interesting to study dynamic behaviors of the harmonic base excitation of a cantilever beam shows many nonlinear dynamics due to unstability , energy transfer and mode coupling. Nonlinear phenomenon shows superharmonic, subharmonic, super subharmonic and chaotic motions of the cantilever beam. Experimental observation and verification of these phenomenon carry much importance for the theoretical study as well as in it self. In the experimental cantilever beam, the chaotic motions of the beam appear as a pink noise signal in FFT analysis and as a torus structure in the oscilloscope analyzed to eventually give information of chaotic motions of the cantilever beam.

  • PDF

Motion of a System with Varying Damping Subject to Harmonic Force - Analytical Analysis (변화하는 감쇠를 갖는 계가 조화력을 받을 때의 운동 - 이론적 해석)

  • Park, O-Cheol;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.898-902
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$ respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. Part of these simulation results are proved analytically.

  • PDF

Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space (비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석)

  • 김택현;김종태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.958-963
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation $f_1\;and\;f_2$, respectively, the displacement at the center of the plate has the strongest component at frequency $f_1$. The angular displacement of the plate has strong components at $f_1-f_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shaker with low frequencies.

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$, respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$, and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shatter with low frequencies.

  • PDF

Numerical analysis on the flow noise characteristics of 300W Savonius-type vertical-axis wind turbines (300W급 Savonius 형 수직축 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyoen;Lee, Gwangse;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.725-730
    • /
    • 2012
  • In this paper, flow noise characteristics of Savonius-type vertical-axis wind turbines are numerically investigated using hybrid CAA techniques. High frequency harmonics as well as BPF components are identified in the predicted noise spectra from a Savonius wind turbine. As the BPF components belong to infrasound, the higher harmonic components affects human response dominantly. Further analysis is performed to investigate the reason causing the higher frequency harmonic noise by changing operational conditions of a Savonius wind turbine. Based on this result, it is revealed that the frequency of higher harmonic components is determined by the radius of blades and angular velocity of Savonius wind turbine.

  • PDF

Vibration of The Robot Due to Rducers (감속기에 의한 로보트 진동 특성 고찰)

  • 하태광
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.149-152
    • /
    • 1986
  • Vibration characteristics of harmonic drives and cyclo drives are reviewed. Both of two have two resonance frequencies inherently. Especially, the amplitudes of cyclo drives are over 1.0g. The test of the robot also shows large amplitude of vibration in the speed which is coincide with the resonance frequencies of reducers.

  • PDF

An Optimal Random Carrier Pulse Width Modulation Technique Based on a Genetic Algorithm

  • Xu, Jie;Nie, Zi-Ling;Zhu, Jun-Jie
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.380-388
    • /
    • 2017
  • Since the carrier sequence is not reproducible in a period of the random carrier pulse width modulation (RCPWM) and a higher harmonic spectrum amplitude is likely to affect the quality of the power supply. In addition, electromagnetic interference (EMI) and mechanical vibration will appear. To solve these problems, this paper has proposed an optimal RCPWM based on a genetic algorithm (GA). In the optimal modulation, the range of the random carrier frequency is taken as a constraint and the reciprocal of the maximum harmonic spectrum amplitude is used as a fitness function to decrease the EMI and mechanical vibration caused by the harmonics concentrated at the carrier frequency and its multiples. Since the problems of the hardware make it difficult to use in practical engineering, this paper has presented a hardware system. Simulations and experiments show that the RCPWM is effective. Studies show that the harmonic spectrum is distributed more uniformly in the frequency domain and that there is no obvious peak in the wave spectra. The proposed method is of great value to research on RCPWM and integrated power systems (IPS).