• Title/Summary/Keyword: Harmonic Control Circuit

Search Result 177, Processing Time 0.03 seconds

In/Output Matching Network Based on Novel Harmonic Control Circuit for Design of High-Efficiency Power Amplifier (고효율 전력증폭기 설계를 위한 새로운 고조파 조절 회로 기반의 입출력 정합 회로)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, a novel harmonic control circuit has been proposed for the design of high-efficiency power amplifier with Si LDMOSFET. The proposed harmonic control circuit haying the short impedances for the second- and third-harmonic components has been used to design the in/output matching network. The efficiency enhancement effect of the proposed harmonic control circuit is superior to the class-F or inverse class-F harmonic control circuit. Also, when the proposed harmonic control circuit has been adapted to the input matching network as well as the output matching network, the of ficiency enhancement effect of the proposed power amplifier has increased all the more. The measured maximum power added efficiency (PAE) of the proposed power amplifier is 82.68% at 1.71GHz band. Compared with class-F and inverse class-F amplifiers, the measured maximum PAE of the proposed power amplifier has increased in $5.08{\sim}9.91%$.

Low Phase Noise VCO using Output Matching Network Based on Harmonic Control Circuit (고조파 조절 회로를 기반으로 한 출력 정합 회로를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • In this paper, a novel voltage-controlled oscillator(VCO) using the output matching network based on the harmonic control circuit is presented for improving the phase noise property. The phase noise suppression is achieved through the harmonic control circuit having the short impedances for both second-harmonic and third-harmonic components, which has been connected at the output matching network. Also, we have used the microstrip square open loop multiple split-ring resonator(OLMSRR) having the high-Q property to further reduce the phase noise of VCO. Because the output matching network based on the harmonic control circuit has been used for reducing the phase noise property instead of the High-Q resonator, we can obtain the broad tuning range by the low-Q resonator. The phase noise of the proposed VCO using the output matching network based on the harmonic control circuit and the microstrip square OLMSRR has been $-127.5{\sim}126.33$ dBc/Hz @ 100 kHz in the tuning range, $5.744{\sim}5.839$ GHz. Compared with the reference VCO using the output matching network without the harmonic control circuit and the microstrip line resonator, the phase noise property of the proposed VCO has been improved in 26.66 dB.

Third Harmonic Injection Circuit to Eliminate Electrolytic Capacitors in Light-Emitting Diode Drivers

  • Yoo, Jin-Wan;Jung, Kwang-Hyun;Jeon, In-Ung;Park, Chong-Yeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.358-365
    • /
    • 2012
  • A new third harmonic injection circuit for light-emitting diode (LED) drivers is proposed to eliminate electrolytic capacitors and thereby extend the lifetime of LED drivers. When a third harmonic current is injected to the input current of the LED driver, the required capacitance of the driver can be reduced. The proposed circuit can control an injection ratio and has simple circuitry. The synchronous third harmonic is generated by a phase locked loop (PLL), a 1/3 counter, and op-amps and applied to a power factor correction circuit. Thus, the storage capacitor can install film capacitors instead of the electrolytic capacitor. The value of storage capacitance can be reduced to 78% compared to an input power factor of 100%. The proposed circuit is applied to the 80W prototype LED driver to experimentally verify the performances.

The Method for Harmonics Elimination of a Single Phase Current by the Analog Relay Control Circuit and Passive Filters (릴레이 구동회로 및 수동필터를 이용한 단상 전원의 부하 적응형 고조파 전류 제거 기법)

  • Park, Jong-Yeon;Lee, Hu-Chan;Lee, Bong-Jin;Choi, Won-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.292-298
    • /
    • 2006
  • Because of the high cost for the active power filter, passive filters have been widly used to eliminate harmonic currents of nonlinear load and can also improve the power factor. They are not often optimal filters because the passive filters are designed under the fixed load conditions. In this paper we proposed the method which only the necessary harmonic filters are operated by detecting the various harmonic current components. We presents the new control method of passive filter selection type with the relay control circuit which is consist of analog GIC, comparater, flip-flop and etc. By the experimental results using the proposed system for the rectifier load, we concluded that the researched method is cost effective and the performance is better than the passive filter.

Low Phase Noise VCO Using Novel Harmonic Control Circuit Based on Composite Right/Left-Handed Transmission Line (혼합 우좌향 전송 선로 기반의 새로운 고조파 조절 회로를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.84-90
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the harmonic control circuit based on the composite right/left-handed (CRLH) transmission lines (TLs) is presented to reduce the phase noise without the reduction of the frequency tuning range and miniaturize the circuit size. The phase noise is reduced by the novel harmonic control circuit having the short impedances for the second- and third-harmonic components. The proposed harmonic control circuit is designed by using the CRLH TLs with the dual-band characteristic by the frequency offset and phase slope of the CRLH TLs. The high-Q resonator has been used to reduce the phase noise, but has the problem of the frequency tuning range reduction. However, the frequency tuning range of the proposed VCO has not been reduced because the phase noise has been reduced without the high-Q resonator. The miniaturization of the circuit size is achieved by using the CRLH TLs instead of the conventional right-handed (RH) TLs. The phase noise of VCO is -119.17 ~ -117.50 dBc/Hz at 100 kHz in the tuning range of 5.731 ~ 5.938 GHz.

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

Harmonic Reduction in Three-Phase Boost Converter with Six Harmonic Injected PWM (6고조파 주입 PWM을 이용한 3상 승압형 컨버터 고조파저감)

  • 이정훈;김재문;안정준;이정호;원충연;정동효
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.327-332
    • /
    • 1999
  • In this paper, six harmonic injection PWM method for reducing total harmonic distortion in single switch three phase discontinuous conduction mode boost converter is presented. In the proposed method, periodic six harmonic voltage is injected in the control circuit to vary the duty ratio of the converter switch within a line cycle so that the fifth order harmonic of the input current is reduced. Experimental results are verified by converter operating at 400V/6kW with three phase 140V~220V input.

  • PDF

Novel Current Compensation Technique for Harmonic Current Elimination (고조파 전류 제거를 위한 새로운 전류 보상 기법)

  • Jeong Gang-Youl
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.587-591
    • /
    • 2004
  • This paper proposes a novel current compensation technique that can eliminate the harmonic currents included in line currents without computation of harmonic current components. A current controller with fast dynamics for an active filter is described. Harmonic currents are directly controlled without the need for sensing and computing the harmonic current of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The DC voltage control loop keeps the voltage across the DC capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a single-chip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.

  • PDF

Input Current Harmonic Reduction of Inverer TIG Welder (인버터 TIG용접기의 전원전류 고조파 저감)

  • 김준호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.560-563
    • /
    • 2000
  • In this paper we proposed AC/DC boost converter to improve input current harmonic reduction in TIG welder. The proposed harmonic reduction circuit with UC2854AN acting on constant switching frequency average current control has a three-loop control structure : the inner current loop the line voltage feed-forward loop and th outer voltage loop. Also we applied the constant current strategy on full bridge IGBT inverter to stabilized the output current using the analog PI controller. To demonstrate the practical significance of the proposed methods some simulation studies and experimental results are presented.

  • PDF

Air-Conditioner Power Source Device to Meet the Harmonic Guide Lines (고조파 규제값에 적합한 에어컨 전원장치)

  • Mun, Sang-Pil;Park, Yeong-Jo;Seo, Gi-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.581-586
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage-doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A circuit design method is shown by experimentation and confirmed simulation. The experimental results of the proposed diode rectifier satisfies the harmonic guide lines. A high input power factor of 97(%) and an efficiency of 98[%] are also obtained. The new rectifier with no controlled switches meet the harmonic guide lines, resulting in a simple, reliable and low-cost at-to dc converters in comparison with the boost-type current-improving circuits. This paper proposes a nonlinear impedance circuit composed by diodes and inductors or capacitors. This circuit needs no control circuits and switches, and the impedance value is changed by the polarity of current or voltage. And this paper presents one of these applications to improve the input current of capacitor input diode rectifiers. The rectifier using the nonlinear impedance circuit is constructed with four diodes and four capacitors in addition to the conventional rectifiers, that is, it has eight diodes and five capacitors, including a DC link capacitor. It makes harmonic components of the input current reduction and the power factor improvement. Half pulse-width modulated (HPWM) inverter was explained compared with conventional pulse width modulated(PWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.