• Title/Summary/Keyword: Harmonic Coefficient

Search Result 175, Processing Time 0.026 seconds

Synthesis and Properties of Novel T-type Nonlinear Optical Polyurethane Containing Tricyanovinylthienyl Group with Enhanced Thermal Stability of Dipole Alignment

  • Cho, You-Jin;Kim, Mi-Sung;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.424-430
    • /
    • 2011
  • A novel T-type polyurethane 7 containing 1-(2,5-dioxyphenyl)-2-(5-(1,2,2-tricyanovinyl)-2-thienyl)ethenes as NLO chromophores, which constitute part of the polymer backbone, was prepared. Polyurethane 7 is soluble in common organic solvents such as DMF and DMSO. It shows a thermal stability up to $270^{\circ}C$ from TGA thermogram with $T_g$ value obtained from DSC thermogram near $155^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer film at 1560 nm fundamental wavelength is $3.56{\times}10^{-9}$ esu. Polymer 7 exhibits a thermal stability even at $5^{\circ}C$ higher than $T_g$, and no significant SHG decay is observed below $160^{\circ}C$, which is acceptable for nonlinear optical device applications.

SORET AND CHEMICAL REACTION EFFECTS ON THE RADIATIVE MHD FLOW FROM AN INFINITE VERTICAL POROUS PLATE

  • MALAPATI, VENKATESWARLU;DASARI, VENKATA LAKSHMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.39-61
    • /
    • 2017
  • In this present article, we analyzed the heat and mass transfer characteristics of the nonlinear unsteady radiative MHD flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate under the influence of Soret and chemical reaction effects. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Based on the flow nature, the dimensionless flow governing equations are resolved to harmonic and non harmonic parts. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. Parametric study of the solutions are conducted and discussed.

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2020
  • Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

Friction-Induced Vibration of Brake Lining Pad (브레이크 라이닝 패드의 마찰 진동)

  • Choi, Y.S.;Jung, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.93-100
    • /
    • 1994
  • Friction-induced vibration characteristics of automotive brake lining pad are investigated on the basis of experimental observations from a pin-on-disk type friction-induced vibration experimental apparatus. The measured responses of the experimental apparatus show limit cycles of quasi-harmonics type and beat phenomena due to the velocity dependence of friction force. To deduce the friction coefficient vs. relative velocity Lienard method is adopted with least square fit. It shows Scurve which characterizes a quasi-harmonic vibration. The calculation of amplitudes and friquencies of the limit cycles is done using slowly changing phase and amplitude method. The theoretical and numerical results show fairly good agreements with those of experiments.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Point Forces (조화집중하중을 받는 무한보에서의 음향방사)

  • 김병삼;홍동표
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • The problem of sound radiation from infinite elastic beams under the action of harmonic point forces is studied. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z = 0 and to be axially infinite. The beam material and the elastic foundation re assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results are examined as a function of wavenumber ratio$(\gamma)$ and stiffness factor$(\Psi)$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces (조화분포이동하중을 받는 무한보에서의 음향방사)

  • 김병삼;이태근;홍동표
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Single-Phase Hybrid Active Power Filter Using Rotating Reference Frame (회전좌표계를 이용한 단상 하이브리드형 능동 전력필터)

  • Kim Jin-Sun;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.377-386
    • /
    • 2005
  • This paper presents the control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active Power filters. To construct two phase system, an imaginary second phase was made. In this proposed method, the new signal which is the delayed through the filtering by the phase-delay property of low-pass filter is used as the secondary phase. Because two-phases have the different phase, the instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying the coefficient k by the compensation current using the rotating reference frame synchronized with the source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames In order to verify the validities of the proposed control methods, experiments are carried out with the prototypes of single-phase hybrid active power filter.

Power Quality Optimal Control of Railway Static Power Conditioners Based on Electric Railway Power Supply Systems

  • Jiang, Youhua;Wang, Wenji;Jiang, Xiangwei;Zhao, Le;Cao, Yilong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1315-1325
    • /
    • 2019
  • Aiming at the negative sequence and harmonic problems in the operation of railway static power conditioners, an optimization compensation strategy for negative sequence and harmonics is studied in this paper. First, the hybrid RPC topology and compensation principle are analyzed to obtain different compensation zone states and current capacities. Second, in order to optimize the RPC capacity configuration, the minimum RPC compensation capacity is calculated according to constraint conditions, and the optimal compensation coefficient and compensation angle are obtained. In addition, the voltage unbalance ${\varepsilon}_U$ and power factor requirements are satisfied. A PSO (Particle Swarm Optimization) algorithm is used to calculate the three indexes for minimum compensating energy. The proposed method can precisely calculate the optimal compensation capacity in real time. Finally, MATLAB simulations and an experimental platform verify the effectiveness and economics of the proposed algorithm.

Feasibility of a Nonlinear Acoustic Method for the Assessment of Bone Status and Osteoporosis in Trabecular Bone

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1849-1854
    • /
    • 2018
  • The present study aims to investigate the feasibility of using a simple nonlinear acoustic method for the assessment of bone status and osteoporosis in trabecular bone. Correlations of linear and nonlinear ultrasound parameters with the apparent bone density were obtained in 32 bovine femoral trabecular bone samples. Highly significant positive correlations were observed between the apparent bone density and the two linear ultrasound parameters, the speed of sound (SOS) and the normalized broadband ultrasound attenuation (nBUA), with Spearman's correlation coefficients of r = 0.85 and 0.77. In contrast, the apparent bone density was found to be negatively correlated with the nonlinear ultrasound parameter introduced in the present study, the logarithmic difference between the power spectrum levels of the fundamental frequency and the second harmonic (PSL1-PSL2), with the highest correlation coefficient of r = -0.92. These results suggest that the PSL1-PSL2, in addition to the SOS and the nBUA, may be useful for the assessment of bone status and osteoporosis.

Mono- and Multi-layer Langmuir-Blodgett Films of Maleimide Polymers Possessing Nonlinear Optical-Active Side Chains

  • Yoon Kuk Ro;Lee Hoosung;Rhee Bum Ku;Jung Changsoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.581-585
    • /
    • 2004
  • A copolymer P[OSA-MI] was synthesized by copolymerization of its corresponding monomers, N-phenyl maleimide (MI) and 2-octen-l-ylsuccinic anhydride (OSA). The polymer (poly[2-[1-(2,5-dioxo-l-phenylpyrroli­din-3-ylmethyl)heptyl]-succinic acid 4-(2-$\{$ethyl-[4-(4-nitrophen-ylazo)phenyl]amino$\}$ethyl)ester]) P[DR1MA-MI] was obtained from the reaction of P[OSA-MI] with 2-[4-(4-nitrophenylazo)-N-ethylphenylamino] ethanol (DR1). A stable monolayer of P[DRIMA-MI] was formed by spreading the solution of the polymer in chloroform. In Y-type Langmuir-Blodgett (LB) films prepared using this Langmuir-Blodgett method, the second harmonic waves generated from adjacent mono layers canceled each other out. In X-and Z-type LB films, the second harmonic intensity increased upon increasing the number of monolayers, but this increase was somewhat smaller than predicted by the square law. This phenomenon is due to defects or imperfect alignment of the dipoles in the LB film. The generation of second harmonic waves from Y-type LB films having an even number of mono layers supports this argument. The degree of imperfection seemed to increase as the number of layers increased. The second-order nonlinear optical properties of spin-cast films of these polymers were also measured. The largest second harmonic coefficient of the poled P[DRIMA-MI] film coated on a glass plate was 19 pm/V.