• 제목/요약/키워드: Hardy-Orlicz spaces

검색결과 5건 처리시간 0.02초

COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES

  • Mujdat Agcayazi;Pu Zhang
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1391-1408
    • /
    • 2023
  • Let M and M# be Hardy-Littlewood maximal operator and sharp maximal operator, respectively. In this article, we present necessary and sufficient conditions for the boundedness properties for commutator operators [M, b] and [M#, b] in a general context of Banach function spaces when b belongs to BMO(?n) spaces. Some applications of the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces and Musielak-Orlicz spaces are also given.

ON THE CONTINUITY OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION

  • Park, Young Ja
    • 충청수학회지
    • /
    • 제31권1호
    • /
    • pp.43-46
    • /
    • 2018
  • It is concerned with the continuity of the Hardy-Little wood maximal function between the classical Lebesgue spaces or the Orlicz spaces. A new approach to the continuity of the Hardy-Littlewood maximal function is presented through the observation that the continuity is closely related to the existence of solutions for a certain type of first order ordinary differential equations. It is applied to verify the continuity of the Hardy-Littlewood maximal function from $L^p({\mathbb{R}}^n)$ to $L^q({\mathbb{R}}^n)$ for 1 ${\leq}$ q < p < ${\infty}$.

SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES

  • Jun Liu;Haonan Xia
    • 대한수학회지
    • /
    • 제60권5호
    • /
    • pp.1057-1072
    • /
    • 2023
  • Let 𝜑 : ℝn × [0, ∞) → [0, ∞) be a growth function and H𝜑(ℝn) the Musielak-Orlicz Hardy space defined via the non-tangential grand maximal function. A general summability method, the so-called 𝜃-summability is considered for multi-dimensional Fourier transforms in H𝜑(ℝn). Precisely, with some assumptions on 𝜃, the authors first prove that the maximal operator of the 𝜃-means is bounded from H𝜑(ℝn) to L𝜑(ℝn). As consequences, some norm and almost everywhere convergence results of the 𝜃-means, which generalizes the well-known Lebesgue's theorem, are then obtained. Finally, the corresponding conclusions of some specific summability methods, such as Bochner-Riesz, Weierstrass and Picard-Bessel summations, are also presented.

HARDY-LITTLEWOOD MAXIMAL FUNCTIONS IN ORLICZ SPACES

  • Yoo, Yoon-Jae
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.225-231
    • /
    • 1999
  • Let Mf(x) be the Hardy-Littlewood maximal function on $\mathbb{R}^n$. Let $\Phi$ and $\Psi$ be functions satisfying $\Phi$(t) = ${\int^t}_0$a(s)ds and $\Psi(t)$ = ${\int^t}_0$b(s)ds, where a(s) and b(s) are positive continuous such that ${\int^\infty}_0\frac{a(s)}{s}ds$ = $\infty$ and b(s) is quasi-increasing. We show that if there exists a constant $c_1$ so that ${\int^s}_0\frac{a(t)}{t}dt\;c_1b(c_1s)$ for all $s\geq0$, then there exists a constant $c_1$ such that(0.1) $\int_{\mathbb{R^{n}}$ $\Phi(Mf(x))dx\;\leq\;c_2$ $\int_\mathbb{R^{n}}$$\Psi(c_2\midf(x)\mid)dx$ for all $f\epsilonL^1(R^n_$. Conversely, if there exists a constant $c_2$ satisfying the condition (0.1), then there exists a constant $c_1$ so that ${\int^s}_\delta\frac{a(t)}{t}dt=;\leq\;c_1b(c_1s$ for all $\delta$ > 0 and $s\geq\delta$.

  • PDF

A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF Cn

  • Matsugu, Yasuo;Miyazawa, Jun;Ueki, Sei-Ichiro
    • 대한수학회지
    • /
    • 제39권5호
    • /
    • pp.783-800
    • /
    • 2002
  • Let B denote the unit ball in $C^n$, and ν the normalized Lebesgue measure on B. For $\alpha$ > -1, define $dv_\alpha$(z) = $c_\alpha$$(1-\midz\mid^2)^{\alpha}$dν(z), z $\in$ B. Here $c_\alpha$ is a positive constant such that $v_\alpha$(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For $p\geq1$, define the Bergman-Privalov space $(AN)^{p}(v_\alpha)$ by $(AN)^{p}(v_\alpha)$ = ${f\inH(B)$ : $\int_B{log(1+\midf\mid)}^pdv_\alpha\;<\;\infty}$ In this paper we prove that a function $f\inH(B)$ is in $(AN)^{p}$$(v_\alpha)$ if and only if $(1+\midf\mid)^{-2}{log(1+\midf\mid)}^{p-2}\mid\nablaf\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case 1<p<$\infty$, or $(1+\midf\mid)^{-2}\midf\mid^{-1}\mid{\nabla}f\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case p = 1, where $nabla$f is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].