• Title/Summary/Keyword: Hardware-in-the-loop

검색결과 525건 처리시간 0.045초

Development of engine control based TCS slip control algorithm using engine map (엔진맵에 기초한 엔진제어 TCS 슬립제어 알고리듬의 개발)

  • Song, Jae-Bok;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제22권2호
    • /
    • pp.428-436
    • /
    • 1998
  • A TCS slip control system improves acceleration capability and steerability on slippery roads through engine torgue and/or brake torque control. This research mainly deals with the engine control algorithm via the adjustment of the engine throttle angle. The following new control strategy is proposed and investigated ; the TCS slip controller whose input is the difference between the desired driving wheel speed corresponding to the optimum slip ratio and the actual speed yields the target engine torque and then estimates the throttle angle based on the engine performance curve. Various simulation and hardware-in-the-loop simulation have been carried out. The results show the proposed strategy may compensate for the inherent nonlinearity between variation of the throttle angle and variation of the engine torque and produce better performance than the previous strategies without the engine map, especially in the high speed region.

Development of a Lane Keeping Assist System using Vision Sensor and DRPG Algorithm (비젼센서와 DRPG알고리즘을 이용한 차선 유지 보조 시스템 개발)

  • Hwang, Jun-Yeon;Huh, Kun-Soo;Na, Hyuk-Min;Jung, Ho-Gi;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2009
  • Lane Keeping Assistant Systems (LKAS) require the cooperative operation between drivers and active steering angle/torque controllers. An LKAS is proposed in this study such that the desired reference path generation (DRPG) system generates the desired path to minimize the trajectory overshoot. Based on the reference path from the DRPG system, an optimal controller is designed to minimize the cost function. A HIL (Hardware In the Loop) simulator is constructed to evaluate the proposed LKAS system. The single camera is mounted on the simulator and acquires the monitor images to detect lane markers. The performance of the proposed system is evaluated by HIL system using the Carsim and the Matlab Simulink.

Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System (대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발)

  • Yoo, Chunsik;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제25권1호
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제26권2호
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.