• Title/Summary/Keyword: Hardening characteristic

Search Result 103, Processing Time 0.026 seconds

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Relative Density of Bottom ash (석탄회의 상대밀도에 따른 Lade 단일항복면 구성모델의 토질매개변수 특성)

  • Kim, Chan-Kee;Lee, Jong-Cheon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.87-98
    • /
    • 2013
  • This study was performed a series of the isotropic compression-expansion tests and the drained triaxial tests with various the relative densities 40%, 60%, 80% and 95% for bottom ash. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters Kur and n representing elastic behavior are not much affected by the change of the relative density. The other parameters such as failure criterion(m, ${\eta}_1$), hardening function(c, p) and plastic potential(${\psi}_2$, ${\mu}$) are in a positive linear relationship with the relative density. Since the soil parameters h and ${\alpha}$ representing yield function do not change much to the change of relative density and also closely related to failure criterion, they can be replaced by failure criterion ${\eta}_1$. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Dry Density of Pocheon Granite Soil (포천 화강토의 건조단위중량에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성)

  • Cho, Won-Beom;Kim, Chan-Kee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, a series of the isotropic compression-expansion tests and the drained triaxial tests were performed on Pocheon granite soil with various the dry densities of $16.67kN/m^3$, $17.26kN/m^3$ and $17.65kN/m^3$. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters such as kur and n related to elastic behavior, m and ${\eta}_1$ related to failure criterion, c and p related to hardening function and ${\psi}_2$ and ${\mu}$ related to plastic potential show in a positive linear relationship with the dry density. Since the soil parameters h and representing yield function do not change much to relative density and also are closely related to failure criterion, they can be replaced by failure criterion. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Relative Density of Baekma River Sands (백마강 모래의 상대밀도에 따른 Lade의 단일항복면 구성모델의 토질매개변수 특성)

  • Cho, Won-Beom;Kim, Chan-Kee;Kim, Joong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.11-17
    • /
    • 2011
  • This study was performed a series of the isotropic compression-expansion tests and the drained triaxial tests with various the relative densities 25%, 50%, 80% and 100% for Baekma river sand. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters Kur and n representing elastic behavior are not much affected by the change of the relative density. The other parameters such as failure criterion (m, ${\eta}_1$), hardening function (C, p) and plastic potential (${\Psi}_2$, ${\mu}$) are in a positive linear relationship with the relative density. Since the soil parameters h and $\alpha$ representing yield function do not change much to the change of relative density and also closely related to failure criterion, they can be replaced by failure criterion ${\eta}_1$. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

An Evaluation of Plastic Flow Characteristic for local structure of Weldment in Power Plant using SP test and Inverse FEA (역해석과 소형펀치 시험에 의한 발전설비 용접부의 소성유동특성 평가)

  • Baek, Seung-Se;Kwon, Il-Hyun;Kim, Hoi-Hyun;Lee, Dong-Hwan;Yang, Sung-Mo;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.308-313
    • /
    • 2004
  • SP test has been confirmed the availability, however the application of SP test is hampered because the relation of stress-strain and load-displacement is not determined definitely. This study suggested an evaluation technique of plastic flow characteristic for X20CrMoV121 steel weldment through inverse analysis using SP test and finite element analysis(FEA). From the result, good agreement was found in load-displacement curves obtained from SP test and FEA. Also, The behavior of load-displacement curve from FEA show a rule that load is increase with increasing K(strength coefficient) and displacement is increase with increasing n(work hardening index). From the inverse analysis, true stress-strain curve could be obtained for each local structure of weldment. And the CGHAZ and WM, which showed lower load- displacement behavior, have smaller work hardening index, while FGHAZ have the largest index.

  • PDF

Heat Treatment Characteristics of Press Blanking Die by Using High Power Diode Laser (고출력 다이오드 레이저를 이용한 프레스 전단금형의 경화특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Hwang, Jae-Hyun;Kim, Jong-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.257-262
    • /
    • 2010
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source.

Analysis of concrete characteristic depending on chemical admixtures changing component content ratio (화학혼화제의 성분함유율 변화에 따른 콘크리트의 특성분석)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • W/C and unit volume, which significantly affect quality of concrete related to strength and durability, are regulated at below $185kg/m^3$ for regular concrete generally used in standard specification for constructions. The aim of this research is to develop chemical admixture and find out its potential use by identifying characteristics of admixtures added to soft concrete and hardening concrete, of which content ratio of component for each type of admixtures is subject to change in accordance with unit volume within KS' allowable range. Sodium gluconate, polyoxyethylene nonylphenyl ether, poly carboxylic copolymer in slump, which is characteristic of soft concrete, are deemed highly sensitive while there is no air entrainment except for $10\sim70%$ in WE, WR component content ratio and NP. In hardening concrete, strength in general showed higher action in compressive strength and tensile strength than in plain strength. Use of proper AE agent and AE water reducing agent at the same time is deemed to be used as chemical admixtures capable of manufacturing high-quality, high-quantity concrete.

An improved Maxwell creep model for salt rock

  • Wang, Jun-Bao;Liu, Xin-Rong;Song, Zhan-Ping;Shao, Zhu-Shan
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • The creep property of salt rock significantly influences the long-term stability of the salt rock underground storage. Triaxial creep tests were performed to investigate the creep behavior of salt rock. The test results indicate that the creep of salt rock has a nonlinear characteristic, which is related to stress level and creep time. The higher the stress level, the longer the creep time, the more obvious the nonlinear characteristic will be. The elastic modulus of salt rock decreases with the prolonged creep time, which shows that the creep damage is produced for the gradual expansion of internal cracks, defects, etc., causing degradation of mechanical properties; meanwhile, the creep rate of salt rock also decreases with the prolonged creep time in the primary creep stage, which indicates that the mechanical properties of salt rock are hardened and strengthened. That is to say, damage and hardening exist simultaneously during the creep of salt rock. Both the damage effect and the hardening effect are considered, an improved Maxwell creep model is proposed by connecting an elastic body softened over time with a viscosity body hardened over time in series, and the creep equation of which is deduced. Creep test data of salt rock are used to evaluate the reasonability and applicability of the improved Maxwell model. The fitting curves are in excellent agreement with the creep test data, and compared with the classical Burgers model, the improved Maxwell model is able to precisely predict the long-term creep deformation of salt rock, illustrating our model can perfectly describe the creep property of salt rock.

A Study on Hardening Characteristics of High Carbon Steel by using High Power Diode Laser (고출력 다이오드 레이저를 이용한 고탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;Kim, Jong-Do;So, Sang-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.600-607
    • /
    • 2011
  • Recently, high carbon steel has become essential not only for shipbuilding parts, but also mass production. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate, microstructural changes and hardness characteristics of two parts (the surface treatment part, and parental material) are observed with the change of laser beam speed and surface temperature.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Elastic-Plastic Response of Sintered Porous Iron under Combined Tension and Torsion (인장/비틀림 조합하중하의 다공질 철소결체의 탄성-소성 거동)

  • 김기태;권녕삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.41-48
    • /
    • 1991
  • A set of constitutive equations is formulated to predict elastic-plastic strain hardening response of sintered porous iron under combined tension and torsion. The proposed constitutive equations were capable of predicting characteristic behaviors of porous metals. Agreement between theoretical curves and experimental data for elastic-plastic response of sintered porous iron was very good for various initial porosities.