• Title/Summary/Keyword: Hardening Materials

Search Result 915, Processing Time 0.027 seconds

Yielding Behavior and Strain Aging Properties of Bake Hardening Steel with Dual-Phase Microstructure (2상 조직을 갖는 소부경화강의 항복 거동과 변형 시효 특성)

  • Lee, Seung-Wan;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.315-320
    • /
    • 2020
  • This study deals with the yielding behavior and strain aging properties of three bake hardening steels with dual-phase microstructure, fabricated by varying the annealing temperature. Bake hardening and aging tests are performed to examine the correlation of martensite volume fraction with yielding behavior and strain aging properties of the bake hardening steels with dual-phase microstructure. The volume fraction of martensite increases with increasing annealing temperature. Room-temperature tensile test results show that the yielding behavior changes from discontinuous-type to continuous-type with increasing volume fraction of martensite due to higher mobile dislocation density. According to the bake hardening and aging tests, the specimen with the highest fraction of martensite exhibited high bake hardening with low aging index because solute carbon atoms in ferrite and martensite effectively diffuse to dislocations during the bake hardening test, while in the aging test they diffuse at only ferrite due to lower aging temperature.

A Study on 40Cr Alloy steel of Laser Surface Hardening (40Cr 강의 Laser Surface Hardening 에 관한 연구)

  • Ryu, Nung-Hee;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.1001-1005
    • /
    • 2001
  • In this study, the surface of 40Cr steel was hardened by $CO_2$Laser, and then the microstructural transformations and the hardness distributions of the laser surface hardened layer were observed. The experimental results showed the surface hardening layer was consisted of three parts, which is outmost surface layer of needle martensite, middle layer of martensite and remained pearlite, and transitory boundary layer. In hardness distributions, the surface hardeness of the surface hardening layer had Hv 800~1000, that was 2 to 4 times of matrix's hardness. The hardeness distribution of laser hardening layer that of surface layer hardened by general heat treatment.

  • PDF

Establishing CCT Diagrams for Sinter Hardening Grade Cr-Mo Prealloyed Steels

  • Stetina, G.;Kalss, G.;Gierl, C.;Danninger, H.;Orth, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.836-837
    • /
    • 2006
  • A CCT diagram for Cr-Mo prealloyed sintered steels suitable for sinter hardening was established by combining dilatometry data, microstructural studies and microhardness measurements of the material. CCT diagrams deepen the understanding of material properties after sinter hardening and support the design of materials on an industrial scale by providing information about required cooling rates for successful sinter hardening of these materials.

  • PDF

Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

  • Lee, Kwang-jin;Woo, Kee-do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.448-453
    • /
    • 2011
  • Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped ${\beta}$" phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

Phase Transformation and Work-hardening Behavior of Ti-based Bulk Metallic Glass Composite

  • Hong, Sung Hwan;Kim, Jeong Tae;Park, Hae Jin;Kim, Young Seok;Park, Jin Man;Suh, Jin Yoo;Na, Young Sang;Lim, Ka Ram;Kim, Ki Buem
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.37-43
    • /
    • 2015
  • In present work, work-hardening behavior of TiCu-based bulk metallic glass composite with B2 particles has been studied by systemic structural and mechanical investigations. After yield, pronounced work-hardening of the alloy was clearly exhibited, which was mainly related to the martensitic transformation as well as the deformation twinning in B2 particles during deformation. At the early plastic deformation stage (work-hardening stage), the stress-induced martensitic transformation from B2 phase to B19' phase and deformation-induced twinning of B19' phase was preferentially occurred in the around interface areas between B2 phase and amorphous matrix by stress concentration. The higher hardness value was observed in vicinity of interface within the B2 particles which are probably connected with martensitic transformation and deformation twinning. This reveals that the work-hardening phenomenon of this bulk metallic glass composite is a result of the hardening of B2 particles embedded in amorphous matrix.

Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method (Ni/Mo 합금분말(FLC-4608)의 소결경화 공정에서 유한요소법을 이용한 마르텐사이트 분율의 예측)

  • Park, Hyo Wook;Joo, Soo-Hyun;Lee, Eon Sik;Kwon, Ki Hyuk;Kim, Hyong Seop
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Microscopic Investigation of the Strain Rate Hardening for Polycrystalline Metals (철강재료 변형률속도 경화의 미시적 관찰)

  • Yoon, J.H.;Park, C.G.;Kang, J.S.;Suh, J.H.;Huh, M.Y.;Kang, H.G.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly in the rage of $10^{-2}$ to $10^2/sec$ strain rate. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2/sec$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimens are investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which show the effect of texture orientation, grain size and dislocation behavior on the strain rate hardening.

Isothermal Age-hardening Behavior in the Commercial Dental Au-Ag-Cu-Pd Alloy (시판 치과용 Au-Ag-Cu-Pd 합금의 등온시효경화거동)

  • Kim, Hyung-Il;Jang, Myoung-Ik;Lee, You-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 1996
  • The relationship between the isothermal age-hardening behavior and the phase transformation in the commercial dental Au-Ag-Cu-Pd alloy was investigated Age-hardening was mostly attributed to the lattice distortions of the supersaturated w phase resulting from the transformation to the metastable phasel which were more distinct at lower aging temperature. The lattice distortions resulting from the transformation of the metastable phases to the equilibrium phases also made a contribution to the age-hardening.

  • PDF