DOI QR코드

DOI QR Code

Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

  • Lee, Kwang-jin (Automotive Components R&D Gr., Korea Institute of Industrial Technology) ;
  • Woo, Kee-do (Division of Advanced Materials Engineering & Research Center of Advanced Materials Technology, Chonbuk National University)
  • Received : 2011.02.15
  • Published : 2011.06.25

Abstract

Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped ${\beta}$" phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

Keywords

Acknowledgement

Supported by : KITECH

References

  1. Y. S. Song, B. J. Kim, H. W. Kim, S. B. Kang, and S. H. Choi, J. Kor. Met. & Mater. 46, 135 (2008).
  2. E. S. park, H. G. Kang, M. Y. Hur, H. J. Kim, and J. C. Bae, J. Kor. Met. & Mater. 47, 363 (2009).
  3. S. H. lee and T. Sakai, Met. Mater. Int. 14, 263 (2008). https://doi.org/10.3365/met.mat.2008.04.263
  4. H. Suzuki, M. Kanno, and Y. Shiraishi, J. Jpn. Ins.t Light Metals 28, 233 (1993).
  5. K. Arai, R. Otsuka, S. Tanimoto, and I. Tsukuda, J. Jpn. Inst. Light Metals 32, 571 (1982.) https://doi.org/10.2464/jilm.32.571
  6. D. W. Pashley, M. H. Jacobs, and J. T. Viets, Phil. Mag. 51, 16 (1967).
  7. T. Moons, P. Ratchev, P. DeSmet, B. Verlinden, and P. Van Houtte, Scr. Mater. 35, 939 (1996). https://doi.org/10.1016/1359-6462(96)00244-8
  8. K. Yamada, T. Sato, and A. Kamio, J. Jpn. Inst. Light Metals 51, 215 (2001) https://doi.org/10.2464/jilm.51.215
  9. H. Hatta, H. Tanaka, S. Matsuda, and H. Yoshida, J. Jpn. Inst. Light Metals 54, 412 (2004) https://doi.org/10.2464/jilm.54.412
  10. M. Saga, Y. Sasaki, M. Kikuchi, A. Hibino, and M. Tatsuo, J. Jpn. Inst. Light Metals 53, 516 (2003) https://doi.org/10.2464/jilm.53.516
  11. Y. Birol, Scripta Mater. 54, 2003 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.022
  12. I. Dutta and S. M. Allen, J. Mater. Sci. Lett. 10, 323 (1991).
  13. G. A. Edwards, K. Stiller, and G. L. Dunlop, App. Surface Sci. 76-77, 219 (1994).
  14. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper, Mater. Sci. Forum 217-222, 713 (1996).
  15. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper, Acta Mater. 46, 3893 (1998). https://doi.org/10.1016/S1359-6454(98)00059-7
  16. M. Murayama, K. Hono, M. Saga, and K. Kikuchi K, Mater. Sci. Eng. A 250, 127 (1998). https://doi.org/10.1016/S0921-5093(98)00548-6
  17. M. Murayama and K. Hono, Acta Mater. 47, 1537 (1999). https://doi.org/10.1016/S1359-6454(99)00033-6
  18. A. Serizawa, S. Hirosawa, and T. Sato, Mater. Sci. Forum 519-521, 215 (2006).
  19. A. Serizawa, S. Hirosawa, and T. Sato, Metall. Mater. Trans. 39A, 243 (2008).
  20. T. Maeguchi, Y. Yamada, and T. Sato, J. Jpn. Inst. Light Metals 66, 127 (2002).
  21. T. Sakurai, Proc. Jpn. Inst. Light Metals 87, 185 (1994).