• Title/Summary/Keyword: Hardened steel

Search Result 252, Processing Time 0.026 seconds

Effect of Ball End Mill Geometry and Cutting Conditions on Machinability of Hardened Tool Steel

  • Jang, Dong-Y.;Won, S.-T.
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Roughing of tool steel in its hardened state represents a real challenge in the die and meld industry and process improvement depends on research of tool material, coating technique, and lubrication. However, roughing of hardened steels generates extreme heat and without coolant flooding, tool material cannot withstand the high temperature without choosing the right tools with proper coating. This research conducted milling tests using coated ball end mills to study effects of cutting conditions and geometric parameters of ball end mills on the machinability of hardened tool steel. KP4 steel and STD 11 heat treated steels were used in the dry cutting as the workpiece and TiAIN coated ball end mills with side relief angle of 12$^{\circ}$ was utilized in the cutting tests. Cutting forces, tool wear, and surface roughness were measured in the cutting tests. Results from the experiments showed that 85 m/min of cutting speed and 0.32 mm/rev of feed rate were optimum conditions for better surface finish during rough cutting and 0.26mm/rev with the same cutting speed are optimum conditions in the finish cutting.

Analysis of Sliding Wear Mode on Hardened Steel by X-ray Diffraction Technique (X선회절에 의한 철강재료의 미Rm럼 마모형태 해석에 관한 연구(고경도강에의 적용))

  • 이한영
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • High strength steels are widely used as tribo-materials in the field. Previous study revealed that for mild steel, the states of strain on the worn surface measured by X-ray diffraction has a good relationship with the state of wear. The objective of this study is to identify the relationship between the state of strain on the worn surface and the state of wear in high strength steels. Sliding wear tests were carried out using several hardened steels. X-ray diffraction tests were conducted to analyze the state of strain on the worn surface during wear. The experimental results indicated that the state of strain on worn surface in the hardened steel shows the same tendency as in the mild steel. It is clear that change of half value width on the worn surface as a function of sliding speeds is broadly similar in shape to wear characteristics curve and its magnitude has a good relationship with the wear rate at two different wear modes in the hardened steel.

A Study on the Failure Characteristics of Ceramic Tool for Hardened Steels (경화강에 대한 세라믹공구의 손상특성에 관한 연구)

  • 김광래;유봉환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.30-37
    • /
    • 1997
  • This thesis is concerned with the study on the characteristics of the tool failure occuring at the beginning of cutting in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool (Al$_{2}$O$_{3}$+TiC) with nose radius. In the machining of hardened carbon steel STC3, the wear mechanism on the flank face of the ceramic tool is abrasion wear. The mode of tool failure is developed into catastropic fracture with flaking. It is thought that the fracture caused by FeO and TiO$_{2}$ results from the oxidation of Fe in the workpice and TiC in the ceramic tool and the deposit of Fe formed on the surface of the ceramic tool. In the machining of hardened alloy steel STD11, the wear mechanism on the flank face of the ceramic tool is that abrasion and adhesion wear exist simultaneously. The mode of tool failure at the beginning of cutting features is DOC notch wear. It is thought that the DOC notch wear caused by FeO and TiO$_{2}$results from the oxidation of Fe and TiC in the workpiece and ceramic tool, respectively.

  • PDF

The Study on Estimation Fatigue Limit in Induction Surface Hardened S45C Steel (S45C강의 고주파 열처리 표면경화재 피로한도 예측에 관한 연구)

  • 이수진;전형용;성낙원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.134-142
    • /
    • 1998
  • The effects of small hole defect size and effective case depth(ECD) on the four point bending fatigue limit of induction surface hardened S45C steel were investigated the fatigue limit evaluation of hardened materials is very difficult because of relations of the hardness gradient and residual stress. In this study, it was possible to characterize fatigue limit and fatigue life of induction surface hardened S45C steel in terms of the hole defect size and effective case depth(ECD) and quantitative evaluation of the fatigue limit with hole defects use Murakami's evaluation method and the range of evaluated values is a good accuracy compared with results.

  • PDF

Precision Grinding Characteristics of Hardened Steel (경화 열처리강의 정밀연삭가공)

  • Choi, Won Sik;Bae, Dae Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.6
    • /
    • pp.355-361
    • /
    • 2005
  • In this study, the effects of the maximum undeformed chip thickness on grinding characteristics of hardened steel in down-grinding have been investigated. The meaured grinding forces become larger as the workpiece velocity increases. The specific energy, e decreases as the maximum undeformed chip thickness increase. When the maximum undeformed chip thickness is the same, the specific energy, e decreases as the grain size increases.

A Study on the Distribution of Internal Inclusions and the Fatigue Strength of Induction Surface Hardened Steel (고주파 표면경화재의 내부개재물의 분포와 피로강도에 관한 연구)

  • Song, Sam-Hong;Choi, Byoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.333-338
    • /
    • 2000
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength for base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. Crack origins are generally micro inclusions for the high strength steel. So, the distribution of inclusions is analyzed statistically.

  • PDF

New PCBN for Heavy Interrupted Cutting of Hardened Steel

  • Okamura, Katsumi;Kukino, Satoru;Fukaya, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.873-874
    • /
    • 2006
  • PCBN tools are used worldwide for machining of hardened steel parts in automotive industries. But in heavy interrupted cutting of hardened steel, the tool life is not so stable by sudden breakage of the cutting edge, and total cost of cutting by PCBN is not so economical compared to the grinding. To solve this problem, new PCBN has been developed. New PCBN has very fine and homogeneous microstructure to increase the toughness of sintered body that it provides a reliable tool life for heavy interrupted cutting.

  • PDF

Influence of CBN Tool Geometry on Cutting Characteristics of High Hardened Steel (CBN 공구의 형상이 고경도강의 절삭특성에 미치는 영향)

  • 문상돈;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.25-30
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and optimum tool geometry on milling of hardened STD11 steel. In the finish process office milling of high hardened STD11 steel by CBN tool, the optimum tool shape is suggested, which can minimize the tool fracture and chipping by impact. It is measured that cutting farce, tool wear and surface roughness generated during single-insert face milling using various geometric CBN tools. It has been found that the optimal chamfer angle of CBN tool is about -$25^{\circ}C$ and the suitable chandler width is 0.2mm. The nose radius of tool is the most excellent at 1.2mm in the viewpoint of tool wear and surface roughness.

  • PDF

Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel (고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.

A Study on Wear Characteristics of Surface-Hardened SM53C Steel by High Frequency Induction (표면경화된 SM53C강의 마모특성에 관한 연구)

  • Park, Won-Jo;Song, Tae-Hoon;Hur, Chung-Weon;Song, Hong-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • The abnormal wears such as unfair-wear and early-wear happen in the earn shaft surface of automobiles. These abnormal wears make efficiency of engines decrease and threaten safety of automobiles. The wear characteristics of the cam shaft is very important for the automobile safety. The cam shaft is surface-hardened by the high frequency induction. In this study, we investigated the wear characteristics of the hardened surface with a SM53C steel. The wear characteristics is examined according to the hardened depth and the amount of load.