• Title/Summary/Keyword: Hard C-Means (HCM) Clustering

Search Result 32, Processing Time 0.022 seconds

Optimal Identification of IG-based Fuzzy Model by Means of Genetic Algorithms (유전자 알고리즘에 의한 IG기반 퍼지 모델의 최적 동정)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a optimal identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally identity we use genetic algorithm (GAs) sand Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the selected input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Genetically Optimized Information Granules-based FIS (유전자적 최적 정보 입자 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Nonlinear Characteristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm (HCM 클러스터링 알고리즘 기반 비퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5379-5388
    • /
    • 2012
  • In fuzzy modeling for nonlinear process, the fuzzy rules are typically formed by selection of the input variables, the number of space division and membership functions. The Generation of fuzzy rules for nonlinear processes have the problem that the number of fuzzy rules exponentially increases. To solve this problem, complex nonlinear process can be modeled by generating the fuzzy rules by means of fuzzy division of input space. Therefore, in this paper, rules of non-fuzzy inference systems are generated by partitioning the input space in the scatter form using HCM clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of HCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the consequence parameters of each rule are identified by the standard least-squares method. And lastly, we evaluate the performance and the nonlinear characteristics using the data widely used in nonlinear process. Through this experiment, we showed that high-dimensional nonlinear systems can be modeled by a very small number of rules.

Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm (HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

On-line Identification of fuzzy model using HCM algorithm (HCM을 이용한 퍼지 모델의 On-Line 동정)

  • Park, Ho-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2929-2931
    • /
    • 1999
  • In this paper, an adaptive fuzzy inference and HCM(Hard C-Means) clustering method are used for on-line fuzzy modeling of nonlinear and complex system. Here HCM clustering method is utilized for determining the initial parameter of membership function of fuzzy premise rules and also avoiding overflow phenomenon during the identification of consequence parameters. To obtain the on-line model structure of fuzzy systems. we use the recursive least square method for the consequent parameter identification. And the proposed on-line identification algorithm is carried out and is evaluated for sewage treatment process system.

  • PDF

Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

  • Park Keon-Jun;Lee Young-Il;Oh Sung-Kwun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

Hybird Identification of IG baed Fuzzy Model (정보 입자 기반 퍼지 모델의 하이브리드 동정)

  • Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2885-2887
    • /
    • 2005
  • We introduce a hybrid identification of information granulation(IG)-based fuzzy model to carry out the model identification of complex and nonlinear systems. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of HCM clustering help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the GAs and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF