• 제목/요약/키워드: Haptic deformation

검색결과 23건 처리시간 0.034초

촉각시스템을 위한 그래픽 변형 알고리즘 (Graphic Deformation Algorithm for Haptic Interface System)

  • 강원찬;김성철;김동옥;김원배;김영동
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.149-154
    • /
    • 2002
  • In this paper, we propose a new graphic deformation algorithm for haptic interface system. Our deformable model is based on non-linear elasticity, anisotropy behavior and the finite element method. Also we developed controller for high-speed communication. The proposed controller is based on the PCI/FPGA technology, which could progress the capability of the position calculating and the force data transmitting. The haptic system is composed of the 6DOF force display device, the high-speed controller, HIR library for 3D graphic deformation algorithm and the haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. We demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we programmed the simulation of force reflecting. As the result of experiment, we found that it has high stability and easy to control for deformable object than some other systems.

촉각시스템을 이용한 실시간 가상환경제어 (The Real-Time Virtual Environment Control Using Haptic Interface System)

  • 강원찬;김영동
    • 전기학회논문지P
    • /
    • 제52권3호
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we propose the haptic system for the real-time virtual environment-control, which controls the sense of sight, hearing and touch. In order to maintain the stable haptic system in this study, we apply the proxy force rendering algorithm and the real-time graphic deformation algorithm based on the FEM. The applied proxy algorithm makes the system possible to be more stable and prompt with a virtual object. Moreover, the haptic rendering algorithm is applied to work out a problem that the tactual transaction-period is different from the graphic transaction- period. The graphic deformation algorithm is developed in the real-time using the deformed FEM. To apply the FEM, a deformed material-model is produced and then the graphic deformation with this model is able to force. Consequently, the graphic rendering algorithm is deduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time. Applying this system to the PC, we prove that it is possible to deform the graphics and transact the haptic. Finally we suggest the variable simulation program to show the efficiency of this system.

실감형 모델링을 위한 볼륨 햅틱 렌더링 알고리즘 (Volume Haptic Rendering Algorithm for Realistic Modeling)

  • 정지찬;박준영
    • 한국CDE학회논문집
    • /
    • 제15권2호
    • /
    • pp.136-143
    • /
    • 2010
  • Realistic Modeling is to maximize the reality of the environment in which perception is made by virtual environment or remote control using two or more senses of human. Especially, the field of haptic rendering, which provides reality through interaction of visual and tactual sense in realistic model, has brought attention. Haptic rendering calculates the force caused by model deformation during interaction with a virtual model and returns it to the user. Deformable model in the haptic rendering has more complexity than a rigid body because the deformation is calculated inside as well as the outside the model. For this model, Gibson suggested the 3D ChainMail algorithm using volumetric data. However, in case of the deformable model with non-homogeneous materials, there were some discordances between visual and tactual sense information when calculating the force-feedback in real time. Therefore, we propose an algorithm for the Volume Haptic Rendering of non-homogeneous deformable object that reflects the force-feedback consistently in real time, depending on visual information (the amount of deformation), without any post-processing.

s-FEM 을 이용한 햅틱 시뮬레이션 (Haptic Simulation with s-FEM)

  • 전성기;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.780-785
    • /
    • 2007
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

s-FEM을 이용한 변형체 햅틱 시뮬레이션 (Haptic Simulation for Deformable Object with s-FEM)

  • 전성기;최진복;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.373-380
    • /
    • 2006
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction 'with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

볼륨 변형과 실시간 햅틱 시뮬레이션을 위한 하이브리드 탄성체 모델 (Hybrid Elastic Model for Volumetric Deformation and Real-time Haptic Simulation)

  • 조재환;김석;박진아
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.68-73
    • /
    • 2009
  • 최근 다양한 햅틱 알고리즘과 햅틱 장비가 개발되면서 햅틱을 이용한 컴퓨터 시뮬레이션이 증가하고 있다. 햅틱 시뮬레이션은 기본적으로 1000Hz 정도의 비교적 고속 리프레쉬를 요구한다. 기존 햅틱 시뮬레이션은 대상 모델을 간략화 해서 고속 리프레쉬 요구사항을 만족 시켰다. 하지만, 유연체 가변형 모델 시뮬레이션은 시각적 변형요소가 중요하기 때문에 모델을 간략화 할 경우에 시각적으로 좋지 않은 결과를 초래한다. 햅틱 렌더링만 담당하는 모델을 따로 분리하여 병렬처리를 통해 햅틱과 변형 시뮬레이션을 모두 하는 경우도 있지만 두 모델간의 관계가 명백하지 않아 문제가 발생하기도 한다. 이 논문에서는 유연체 시뮬레이션을 위한 볼륨 변형 모델과 햅틱 렌더링 모델을 정의하고 두 모델간의 관계를 정의한다. 또한, 충돌처리등 사용자 인터랙션에 필요한 알고리즘을 제안하고 수술시뮬레이션 등에 적용해보고자 한다.

  • PDF

반발력을 생성하는 햅틱장비를 이용한 가상의 점토 모델링에 관한 연구 (On the Virtual Clay Modeling Using a Force Reflecting Haptic Manipulator)

  • 채영호
    • 한국CDE학회논문집
    • /
    • 제4권1호
    • /
    • pp.12-18
    • /
    • 1999
  • A deformable non-Uniform Rational B-Spline (NURBS) based volume is programed for the force reflecting exoskeleton haptic device. In this work, a direct free form deformation (DFFD) technique is applied for the realistic manipulation. In order to implement the real-time deformation, a nodal mapping technique is used to connect points on the virtual object with the NURBS volume. This geometric modeling technique is ideally incorporated with the force reflecting haptic device as a virtual interface. The results in this work introduce details for the complete set-up for the realistic virtual clay modeling task with force feedback. The force reflecting exoskeleton haptic manipulator, coupled with a supporting PUMA 560 manipulator and the virtual clay model are integrated with the graphics display, and results show that the force feedback from the realistic physically based virtual environment can greately enhance the sense of immersion.

  • PDF

가상현실을 위한 다중 접촉 실시간 햅틱 랜더링 (Real-Time Haptic Rendering for Multi-contact Interaction with Virtual Environment)

  • 이경노;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.663-671
    • /
    • 2008
  • This paper presents a real-time haptic rendering method for multi-contact interaction with virtual environments. Haptic systems often employ physics-based deformation models such as finite-element models and mass-spring models which demand heavy computational overhead. The haptic system can be designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. A multi-rate output-estimation with an exponential forgetting factor is proposed to implement real-time haptic rendering for the haptic systems with two sampling rates. The computational burden of the output-estimation increases rapidly as the number of contact points increases. To reduce the computation of the estimation, the multi-rate output-estimation with reduced parameters is developed in this paper. Performance of the new output-estimation with reduced parameters is compared with the original output-estimation with full parameters and an exponential forgetting factor. Estimated outputs are computed from the estimated input-output model at a high rate, and trace the analytical outputs computed from the deformation model. The performance is demonstrated by simulation with a linear tensor-mass model.

A Dual Modeling Method for a Real-Time Palpation Simulator

  • Kim, Sang-Youn;Park, Se-Kil;Park, Jin-Ah
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.55-66
    • /
    • 2012
  • This paper presents a dual modeling method that simulates the graphic and haptic behavior of a volumetric deformable object and conveys the behavior to a human operator. Although conventional modeling methods (a mass-spring model and a finite element method) are suitable for the real-time computation of an object's deformation, it is not easy to compute the haptic behavior of a volumetric deformable object with the conventional modeling method in real-time (within a 1kHz) due to a computational burden. Previously, we proposed a fast volume haptic rendering method based on the S-chain model that can compute the deformation of a volumetric non-rigid object and its haptic feedback in real-time. When the S-chain model represents the object, the haptic feeling is realistic, whereas the graphical results of the deformed shape look linear. In order to improve the graphic and haptic behavior at the same time, we propose a dual modeling framework in which a volumetric haptic model and a surface graphical model coexist. In order to inspect the graphic and haptic behavior of objects represented by the proposed dual model, experiments are conducted with volumetric objects consisting of about 20,000 nodes at a haptic update rate of 1000Hz and a graphic update rate of 30Hz. We also conduct human factor studies to show that the haptic and graphic behavior from our model is realistic. Our experiments verify that our model provides a realistic haptic and graphic feeling to users in real-time.

촉각시스템을 위한 그래픽 변형 알고리즘 (Graphic Deformation Algorithm for Haptic Interface System)

  • 강원찬;정원태;김영동;신석두
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.67-71
    • /
    • 2002
  • In this paper, we propose a new deformable model based on non-linear elasticity, anisotropic behavior and the finite element method and developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology, which can calculate the real position and transmit the force data to device rapidly, The haptic system is composed of 6DOF force display device, high-speed controller and HIR library for 3D graphic deformation algorithm & haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. we demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we designed simulation program of force-reflecting, As the result of the experiment, we found that the controller has much higher resolution than some other controllers.

  • PDF