필기체 숫자인식은 일반적으로 높은 인식률과 문맥 독립이 요구되고 있고, 쓰는 사람에 따라서 많은 차이점이 있어서 자유 필기체 숫자는 인식이나 알고리즘작성에 아직도 어려운 문제점이 있다. 본 연구에서는, 필기체 숫자의 특성을 분석하고, 구조적 특징기반 자유 필기체 숫자인식 알고리즘을 새롭게 제안한다. 주어진 필기 숫자에 대하여, 끝점과 분기점, 수평선과 함께 숫자의 구조적 특징을 연구한다. 이 방법은 확장된 구조적 특징 알고리즘으로 제안되어 강인하며, 그리고 본 연구에서 제안한 구조적 특징에 기반 한 결정 트리(decision tree)는 필기체 숫자 자동인식방법에 구조적으로 기여한다. 본 알고리즘이 다른 방법과 비교하여 인식률과 강인성이 우수함을 실험결과로 보여주었다.
지금까지 기계 기반의 필기 숫자 인식 방법에 대한 많은 연구가 진행되어 왔다. 그러나 여전히 인간이 만족할 만한 인식 성능을 이루지는 못하였다. 이러한 배경에는 단순히 인식률을 나타내는 수치가 낮은 것도 한 부분을 차지 하지만, 인간이 수긍할 수 없는 오류 성향도 중요한 부분을 차지한다. 그러므로 본 논문에서는 실제 인간의 숫자 인식이 어떻게 이루어지는지를 확인하는 실험을 먼저 수행하고, 이것에 근거하여 기계 인식을 위하여 필요한 요소들이 무엇인지를 고찰하도록 하였다. 실험결과 한쪽 또는 양쪽 방향으로 혼동하는 숫자 쌍, 전혀 혼동하지 않는 숫자 쌍, 오류 발생의 중복성 등의 결과를 비교 분석하여 인간이 인식과정에서 중요하게 고려하는 특징들을 찾아냈고, 그 결과에 근거하여 기계 인식에 있어서 더 높은 인식 성능을 발휘할 수 있고, 더 나아가 인간적인 측면에서 보다 더 신뢰할 수 있는 인식결과를 이끌어 낼 수 있는 접근 방향에 대하여 제시하였다.
Communication between human and machine is having been researched from last few decades and still it's a challenging task because human behavior is unpredictable. When it comes on handwritten digits almost each human has their own writing style. Handwritten digit recognition plays an important role, especially in the courtesy amounts on bank checks, postal code on mail address etc. In our study, we proposed an efficient feature extraction system for recognizing single digit number drawn by mouse or by a finger on a screen. Our proposed method combines basic image processing and reading the strokes of a line drawn. It is very simple and easy to implement in various platform as compare to the system which required high system configuration. This system has been designed, implemented, and tested successfully.
본 논문은 퍼지추론을 이용하여 신경회로망의 필기체 숫자 인식 개선 방법을 제안하였고 실험을 통하여 확인하였다. 신경회로망은 학습 시간이 오래 걸리고, 학습한 패턴에서는 100% 인식률을 보였다. 그러나 신경회로망은 시험 패턴에서는 좋은 결과를 보여주지 못했다. 실험결과 신경회로망의 인식률과 오인식률이 각각 초기 89.6%, 10.4%에서 90.2%, 9.8%로 각각 향상되었다. 특히, 숫자 3과 5에서 오인식률을 크게 감소시켰다. 실험에서 퍼지 소속 함수의 추출을 숫자의 밀도로 사용하였으나 필기체 숫자는 입력 패턴이 다양하기 때문에 다양한 특성을 추출하고 복합적으로 퍼지 추론을 사용해 더 나은 인식률을 높여야 한다. 또한 퍼지추론을 엄격하게 적용하기보다는 입력 패턴을 매칭 할 때 퍼지 추론을 적용하는 것을 제안한다.
본 논문은 한 가지 특징 요소로서 획 방향 코드들만을 사용하는 강건한 오프라인 필기체 숫자 인식 방법을 제안한다. 이 방법은 입력된 숫자 이미지에 대하여 일반적인 8방향 코드를 생성하고 이 코드들의 조합을 다층 신경망에 학습하고 각 숫자를 인식하게 한다. 8방향 코드들은 다양하게 표현된 숫자들의 자기구성 그래프(SOG*:Improved Self-Organizing Graph) 세선화 결과에 의해 만들어지고 이 코드의 사용은 2개 이상의 특징점들을 처리하는 기존의 복합적인 단계들을 단순화시킨다. 실험결과는 모든 숫자 데이타베이스의 어떤 이미지들에 대해서도 인식률이 일관성 있게 98.85% 이상임을 보여준다.
본 논문에서는 독립문자 식별기 및 인식기를 바탕으로 한 결정값 발생기를 도입하여 무제 약 필기체 숫자 열을 효과적으로 인식하는 방안을 제안하였다. 필기체 숫자 열의 인식을 위해 사전 분할 모듈, 최종 분할 모듈 그리고 인식 모듈 등의 세 개의 모듈을 설계 구현하였다. 사전 분할 모듈에서는 결정값 발생기를 이용하여 독립 숫자, 접촉 숫자 그리고 끊어진 숫자 등을 구분하였다. 최종 분할 모듈에서도 결정값 발생기의 결과를 이용하여 접촉 숫자들을 분할하는 과정을 수행하고 인식 모듈에서 각각 분할된 숫자들을 인식하였다. 분할 기반 방식과 무 분할 방식을 혼용하여 필기체 숫자열을 인식함으로서 기존의 오 인식률을 최소화시키도록 하였다. 제안된 방식을 이용하여 NIST SD19 필기체 숫자 열 데이터베이스의 인식을 한 결과 기존의 연구결과에 비해 높은 96.7%의 인식률을 얻을 수 있었다.
In this paper, we present a solution for combining multiple neural networks. Each neural network is trained with different features. And the neural networks are combined by four methods. The recognition rates by four combination methods are compared. The experimental results for handwritten digit recognition shows that the combination at hidden layers by single layer neural network is superior to any other methods. The reasons of the results are explained.
In this paper, we propose the parallel, self-organizing, hierarchical neural netowrks as a handwritten digit recognition system. This system can absorb the various shape variations of handwritten digits by using the different methods of extracting the features in each stage neural network (SNN) of the PSHNN, and can reduce training time by using the single layer neural network as the SNN, and can obtain high rate of correct recognition by using the certainty area in all the output nodes individually. experiments have been performed with NIST database. In which we use 21, 315 digits (10, 625 digits for training and 10,663 digits for testing). The results show that the correct rate is 97.48% the error rate is 1.72% and the reject rate is 0.78%.
본 논문에서는 필기체 숫자인식을 위해서 계층적으로 서로 다른 레벨의 정보를 표현할 수 있는 구조화된 특징들의 추출 방법과 특징들 사이에 의존도를 이용하여 분류하는 베이지안 망을 제안한다. 이러한 계층적 특징들을 추출하기 위해서 레벨 단위로 가버 필터들을 정의하고, FLD(Fisher Linear Discriminant) 척도를 이용하여 최적화된 가버 필터들을 선택한다. 계층적 가버 특징들은 최적화된 가버 특징들을 이용하여 추출되며, 하위 레벨일수록 더욱 국부적인 정보를 표현한다. 추출된 계층적 가버 특징들의 분류성능 향상을 위해서 가버 특징들 사이의 계층적 의존도를 이용하는 베이지안 망을 생성한다. 본 논문에서 제안하는 방법은 naive Bayesian 분류기, k-nearest neighbor 분류기, 그리고 신경망 분류기들과 함께 필기체 숫자인식에 적용되어 계층적 가버 특징들의 효율성과 계층적 의존도를 이용하는 베이지안 망은 분류성능을 향상시킬 수 있다는 것을 보여준다.
본 논문에서는 Zernike 모멘트와 backpropagation신경망을 이용한 온라인 필기체 숫자 인식 방법을 소개한다. 마우스로 통해 입력된 숫자 정보는 전처리를 통해 시간에 순서적이고, 연속적인 좌표 정보로 변환된다. 전처리된 입력 좌표는 Zernike 모멘트(moment)와 각도 특징(angulation feature)을 이용하여 각 숫자가 가지는 고유의 특징을 만들어 낸다. 이러한 특징은 크기, 모양, 틀어진 정도에 상관없이 항상 일정한 성질을 가진다. 제안된 방법으로 추출된 특징은 패턴 구분을 위해 back propagation 신경망의 입력으로 사용된다. 본 논문은 200개의 필기체 숫자 데이터베이스를 이용하여 실험을 한 결과, 제시된 방법은 적은 학습데이터만으로 학습이 가능할 뿐만 아니라 좋은 인식률을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.