• Title/Summary/Keyword: Handwritten Script

Search Result 12, Processing Time 0.02 seconds

Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script

  • Kumar, Rajiv;Ravulakollu, Kiran Kumar;Bhat, Rajesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.893-913
    • /
    • 2017
  • The handwriting based person identification systems use their designer's perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer's personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.

An Implementation of Hangul Handwriting Correction Application Based on Deep Learning (딥러닝에 의한 한글 필기체 교정 어플 구현)

  • Jae-Hyeong Lee;Min-Young Cho;Jin-soo Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.13-22
    • /
    • 2024
  • Currently, with the proliferation of digital devices, the significance of handwritten texts in daily lives is gradually diminishing. As the use of keyboards and touch screens increase, a decline in Korean handwriting quality is being observed across a broad spectrum of Korean documents, from young students to adults. However, Korean handwriting still remains necessary for many documentations, as it retains individual unique features while ensuring readability. To this end, this paper aims to implement an application designed to improve and correct the quality of handwritten Korean script The implemented application utilizes the CRAFT (Character-Region Awareness For Text Detection) model for handwriting area detection and employs the VGG-Feature-Extraction as a deep learning model for learning features of the handwritten script. Simultaneously, the application presents the user's handwritten Korean script's reliability on a syllable-by-syllable basis as a recognition rate and also suggests the most similar fonts among candidate fonts. Furthermore, through various experiments, it can be confirmed that the proposed application provides an excellent recognition rate comparable to conventional commercial character recognition OCR systems.

Matching Algorithm for Hangul Recognition Based on PDA

  • Kim Hyeong-Gyun;Choi Gwang-Mi
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.161-166
    • /
    • 2004
  • Electronic Ink is a stored data in the form of the handwritten text or the script without converting it into ASCII by handwritten recognition on the pen-based computers and Personal Digital Assistants(PDA) for supporting natural and convenient data input. One of the most important issue is to search the electronic ink in order to use it. We proposed and implemented a script matching algorithm for the electronic ink. Proposed matching algorithm separated the input stroke into a set of primitive stroke using the curvature of the stroke curve. After determining the type of separated strokes, it produced a stroke feature vector. And then it calculated the distance between the stroke feature vector of input strokes and one of strokes in the database using the dynamic programming technique.

A Hangul Script Matching Algorithm for PDA (PDA상에서의 한글 필기체 매칭 알고리즘)

  • Cho, Mi-Gyung;Cho, Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.10
    • /
    • pp.684-693
    • /
    • 2002
  • Electronic Ink is a stored data in the form of the handwritten text or the script without converting it into ASCII by handwritten recognition on the pen-based computers and Personal Digital Assistants(PDAs) for supporting natural and convenient data input. One of the most Important issue is to search the electronic ink in order to use it. We proposed and implemented a script matching algorithm for the electronic ink. Proposed matching algorithm separated the input stroke into a set of primitive stroke using the curvature of the stroke curve. After determining the type of separated strokes, it produced a stroke feature vector. And then it calculated the distance between the stroke feature vector of input strokes and one of strokes in the database using the dynamic programming technique. We did various experiments and our algorithm showed high matching rate over 97.7% for only the Korean script and 94% for the data mixed Korean with the Chinese character.

Implementation of an efficient Pocket PC- based Hangul Matching System (Pocket PC기반의 효율적인 한글 정합 시스템 구현)

  • Park Jong-Min;Cho Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1546-1552
    • /
    • 2004
  • Electronic Ink is a stored data in the form of the handwritten text or the script without converting it into ASCII by handwritten recognition on the pen-based computers and Personal Digital Assistants(Pocket PC) for supporting natural and convenient data input. One of the most important issues is to search the electronic ink in order to use it. We proposed and implemented a script matching algorithm for the electronic ink. Proposed matching algorithm separated the input stroke into a set of primitive stroke using the curvature of the stroke curve. After determining the type of separated strokes, it produced a stroke feature vector. And then it calculated the distance between the stroke feature vector of input strokes and one of strokes in the database using the dynamic programming technique.

Sub-word Based Offline Handwritten Farsi Word Recognition Using Recurrent Neural Network

  • Ghadikolaie, Mohammad Fazel Younessy;Kabir, Ehsanolah;Razzazi, Farbod
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.703-713
    • /
    • 2016
  • In this paper, we present a segmentation-based method for offline Farsi handwritten word recognition. Although most segmentation-based systems suffer from segmentation errors within the first stages of recognition, using the inherent features of the Farsi writing script, we have segmented the words into sub-words. Instead of using a single complex classifier with many (N) output classes, we have created N simple recurrent neural network classifiers, each having only true/false outputs with the ability to recognize sub-words. Through the extraction of the number of sub-words in each word, and labeling the position of each sub-word (beginning/middle/end), many of the sub-word classifiers can be pruned, and a few remaining sub-word classifiers can be evaluated during the sub-word recognition stage. The candidate sub-words are then joined together and the closest word from the lexicon is chosen. The proposed method was evaluated using the Iranshahr database, which consists of 17,000 samples of Iranian handwritten city names. The results show the high recognition accuracy of the proposed method.

A Comprehensive Approach for Tamil Handwritten Character Recognition with Feature Selection and Ensemble Learning

  • Manoj K;Iyapparaja M
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1540-1561
    • /
    • 2024
  • This research proposes a novel approach for Tamil Handwritten Character Recognition (THCR) that combines feature selection and ensemble learning techniques. The Tamil script is complex and highly variable, requiring a robust and accurate recognition system. Feature selection is used to reduce dimensionality while preserving discriminative features, improving classification performance and reducing computational complexity. Several feature selection methods are compared, and individual classifiers (support vector machines, neural networks, and decision trees) are evaluated through extensive experiments. Ensemble learning techniques such as bagging, and boosting are employed to leverage the strengths of multiple classifiers and enhance recognition accuracy. The proposed approach is evaluated on the HP Labs Dataset, achieving an impressive 95.56% accuracy using an ensemble learning framework based on support vector machines. The dataset consists of 82,928 samples with 247 distinct classes, contributed by 500 participants from Tamil Nadu. It includes 40,000 characters with 500 user variations. The results surpass or rival existing methods, demonstrating the effectiveness of the approach. The research also offers insights for developing advanced recognition systems for other complex scripts. Future investigations could explore the integration of deep learning techniques and the extension of the proposed approach to other Indic scripts and languages, advancing the field of handwritten character recognition.

Segmentation of Words from the Lines of Unconstrained Handwritten Text using Neural Networks (신경회로망을 이용한 제약 없이 쓰여진 필기체 문자열로부터 단어 분리 방법)

  • Kim, Gyeong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.27-35
    • /
    • 1999
  • Researches on the recognition of handwritten script have been conducted under the assumption that the isolated recognition units are provided as inputs. However, in practical recognition system designs, providing the isolated recognition unit is an challenge due to various writing syles. This paper proposes an approach for segmenting words from lines of unconstrained handwritten text, without help of recognition. In contrast to the conventional approaches which are based on physical gaps between connected components, clues that reflect the author's writing style, in terms of spacing, are extracted and utilized for the segmentation using a simple neural network. The clues are from character segments and include normalized heights and intervals of the segments. Effectiveness of the proposed approach compared with the conventional connected component based approaches in terms of word segmentation performance was evaluated by experiments.

  • PDF

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

A Methodology for Urdu Word Segmentation using Ligature and Word Probabilities

  • Khan, Yunus;Nagar, Chetan;Kaushal, Devendra S.
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • This paper introduce a technique for Word segmentation for the handwritten recognition of Urdu script. Word segmentation or word tokenization is a primary technique for understanding the sentences written in Urdu language. Several techniques are available for word segmentation in other languages but not much work has been done for word segmentation of Urdu Optical Character Recognition (OCR) System. A method is proposed for word segmentation in this paper. It finds the boundaries of words in a sequence of ligatures using probabilistic formulas, by utilizing the knowledge of collocation of ligatures and words in the corpus. The word identification rate using this technique is 97.10% with 66.63% unknown words identification rate.