• Title/Summary/Keyword: Handwriting Recognition

Search Result 73, Processing Time 0.026 seconds

Online Recognition of Handwritten Korean and English Characters

  • Ma, Ming;Park, Dong-Won;Kim, Soo Kyun;An, Syungog
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.653-668
    • /
    • 2012
  • In this study, an improved HMM based recognition model is proposed for online English and Korean handwritten characters. The pattern elements of the handwriting model are sub character strokes and ligatures. To deal with the problem of handwriting style variations, a modified Hierarchical Clustering approach is introduced to partition different writing styles into several classes. For each of the English letters and each primitive grapheme in Korean characters, one HMM that models the temporal and spatial variability of the handwriting is constructed based on each class. Then the HMMs of Korean graphemes are concatenated to form the Korean character models. The recognition of handwritten characters is implemented by a modified level building algorithm, which incorporates the Korean character combination rules within the efficient network search procedure. Due to the limitation of the HMM based method, a post-processing procedure that takes the global and structural features into account is proposed. Experiments showed that the proposed recognition system achieved a high writer independent recognition rate on unconstrained samples of both English and Korean characters. The comparison with other schemes of HMM-based recognition was also performed to evaluate the system.

Handwriting and Voice Input using Transparent Input Overlay (투명한 입력오버레이를 이용한 필기 및 음성 입력)

  • Kim, Dae-Hyun;Kim, Myoung-Jun;Lee, Zin-O
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.245-254
    • /
    • 2008
  • This paper proposes a unified multi-modal input framework to interface the recognition engines such as IBM ViaVoice and Microsoft handwriting-recognition system with general window applications, particularly, for pen-input displays. As soon as user pushes a hardware button attached to the pin-input display with one hand, the current window of focus such as a internet search window and a word processor is overlaid with a transparent window covering the whole desktop; upon which user inputs handwriting with the other hand, without losing the focus of attention on working context. As well as freeform handwriting on this transparent input overlay as a sketch pad, the user can dictate some words and draw diagrams to communicate with the system.

Enhanced technique for Arabic handwriting recognition using deep belief network and a morphological algorithm for solving ligature segmentation

  • Essa, Nada;El-Daydamony, Eman;Mohamed, Ahmed Atwan
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.774-787
    • /
    • 2018
  • Arabic handwriting segmentation and recognition is an area of research that has not yet been fully understood. Dealing with Arabic ligature segmentation, where the Arabic characters are connected and unconstrained naturally, is one of the fundamental problems when dealing with the Arabic script. Arabic character-recognition techniques consider ligatures as new classes in addition to the classes of the Arabic characters. This paper introduces an enhanced technique for Arabic handwriting recognition using the deep belief network (DBN) and a new morphological algorithm for ligature segmentation. There are two main stages for the implementation of this technique. The first stage involves an enhanced technique of the Sari segmentation algorithm, where a new ligature segmentation algorithm is developed. The second stage involves the Arabic character recognition using DBNs and support vector machines (SVMs). The two stages are tested on the IFN/ENIT and HACDB databases, and the results obtained proved the effectiveness of the proposed algorithm compared with other existing systems.

Handwritten One-time Password Authentication System Based On Deep Learning (심층 학습 기반의 수기 일회성 암호 인증 시스템)

  • Li, Zhun;Lee, HyeYoung;Lee, Youngjun;Yoon, Sooji;Bae, Byeongil;Choi, Ho-Jin
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Inspired by the rapid development of deep learning and online biometrics-based authentication, we propose a handwritten one-time password authentication system which employs deep learning-based handwriting recognition and writer verification techniques. We design a convolutional neural network to recognize handwritten digits and a Siamese network to compute the similarity between the input handwriting and the genuine user's handwriting. We propose the first application of the second edition of NIST Special Database 19 for a writer verification task. Our system achieves 98.58% accuracy in the handwriting recognition task, and about 93% accuracy in the writer verification task based on four input images. We believe the proposed handwriting-based biometric technique has potential for use in a variety of online authentication services under the FIDO framework.

Handwriting Thai Digit Recognition Using Convolution Neural Networks (다양한 컨볼루션 신경망을 이용한 태국어 숫자 인식)

  • Onuean, Athita;Jung, Hanmin;Kim, Taehong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.15-17
    • /
    • 2021
  • Handwriting recognition research is mainly focused on deep learning techniques and has achieved a great performance in the last few years. Especially, handwritten Thai digit recognition has been an important research area including generic digital numerical information, such as Thai official government documents and receipts. However, it becomes also a challenging task for a long time. For resolving the unavailability of a large Thai digit dataset, this paper constructs our dataset and learns them with some variants of the CNN model; Decision tree, K-nearest neighbors, Alexnet, LaNet-5, and VGG (11,13,16,19). The experimental results using the accuracy metric show the maximum accuracy of 98.29% when using VGG 13 with batch normalization.

  • PDF

Design and Implementation of a Language Identification System for Handwriting Input Data (필기 입력데이터에 대한 언어식별 시스템의 설계 및 구현)

  • Lim, Chae-Gyun;Kim, Kyu-Ho;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • Recently, to accelerate the Ubiquitous generation, the input interface of the mobile machinery and tools are actively being researched. In addition with the existing interfaces such as the keyboard and curser (mouse), other subdivisions including the handwriting, voice, vision, and touch are under research for new interfaces. Especially in the case of small-sized mobile machinery and tools, there is a increasing need for an efficient input interface despite the small screens. This is because, additional installment of other devices are strictly limited due to its size. Previous studies on handwriting recognition have generally been based on either two-dimensional images or algorithms which identify handwritten data inserted through vectors. Futhermore, previous studies have only focused on how to enhance the accuracy of the handwriting recognition algorithms. However, a problem arisen is that when an actual handwriting is inserted, the user must select the classification of their characters (e.g Upper or lower case English, Hangul - Korean alphabet, numbers). To solve the given problem, the current study presents a system which distinguishes different languages by analyzing the form/shape of inserted handwritten characters. The proposed technique has treated the handwritten data as sets of vector units. By analyzing the correlation and directivity of each vector units, a more efficient language distinguishing system has been made possible.

Implementation of An On-Line Continuous Recognition System for Cursive Handwriting (자소간의 흘림을 허용하는 연속형 온라인 필기 인식 시스템의 구현)

  • 권오성;권영빈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.166-177
    • /
    • 1994
  • In this paper, an implemenation of on-line continuous recognizer for cursive Hangul handwriting is explained. For the Hangul recognition system, we propose a high speed string matching. The editing process in our proposed string matching is accomplished by single editing path. And the matching results are stored in a heap structure and we decide the user comfortibility of unceasing writing during recognition owing to the high speed matching. In the experimental result, a recongition rate of 86.36% at 1.75 second/character over 21,076 characters collected from 50 persons are abtained. And it is shown that the proposed recognition system is operated properly for the on-line recognition for cursive handwring between graphemes.

  • PDF

Fast Handwriting Recognition Using Model Graph (모델 그래프를 이용한 빠른 필기 인식 방법)

  • Oh, Se-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.892-898
    • /
    • 2012
  • Rough classification methods are used to improving the recognition speed in many character recognition problems. In this case, some irreversible result can occur by an error in rough classification. Methods for duplicating each model in several classes are used in order to reduce this risk. But the errors by rough classfication can not be completely ruled out by these methods. In this paper, an recognition method is proposed to increase speed that matches models selectively without any increase in error. This method constructs a model graph using similarity between models. Then a search process begins from a particular point in the model graph. In this process, matching of unnecessary models are reduced that are not similar to the input pattern. In this paper, the proposed method is applied to the recognition problem of handwriting numbers and upper/lower cases of English alphabets. In the experiments, the proposed method was compared with the basic method that matches all models with input pattern. As a result, the same recognition rate, which has shown as the basic method, was obtained by controlling the out-degree of the model graph and the number of maintaining candidates during the search process thereby being increased the recognition speed to 2.45 times.

Hangul Handwriting Recognition using Recurrent Neural Networks (순환신경망을 이용한 한글 필기체 인식)

  • Kim, Byoung-Hee;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.316-321
    • /
    • 2017
  • We analyze the online Hangul handwriting recognition problem (HHR) and present solutions based on recurrent neural networks. The solutions are organized according to the three kinds of sequence labeling problem - sequence classifications, segment classification, and temporal classification, with additional consideration of the structural constitution of Hangul characters. We present a stacked gated recurrent unit (GRU) based model as the natural HHR solution in the sequence classification level. The proposed model shows 86.2% accuracy for recognizing 2350 Hangul characters and 98.2% accuracy for recognizing the six types of Hangul characters. We show that the type recognizing model successfully follows the type change as strokes are sequentially written. These results show the potential for RNN models to learn high-level structural information from sequential data.

An Implementation of Hangul Handwriting Correction Application Based on Deep Learning (딥러닝에 의한 한글 필기체 교정 어플 구현)

  • Jae-Hyeong Lee;Min-Young Cho;Jin-soo Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.13-22
    • /
    • 2024
  • Currently, with the proliferation of digital devices, the significance of handwritten texts in daily lives is gradually diminishing. As the use of keyboards and touch screens increase, a decline in Korean handwriting quality is being observed across a broad spectrum of Korean documents, from young students to adults. However, Korean handwriting still remains necessary for many documentations, as it retains individual unique features while ensuring readability. To this end, this paper aims to implement an application designed to improve and correct the quality of handwritten Korean script The implemented application utilizes the CRAFT (Character-Region Awareness For Text Detection) model for handwriting area detection and employs the VGG-Feature-Extraction as a deep learning model for learning features of the handwritten script. Simultaneously, the application presents the user's handwritten Korean script's reliability on a syllable-by-syllable basis as a recognition rate and also suggests the most similar fonts among candidate fonts. Furthermore, through various experiments, it can be confirmed that the proposed application provides an excellent recognition rate comparable to conventional commercial character recognition OCR systems.