This paper proposes a method to track hand gesture and to recognize the gesture pattern using Kalman filter and continuous dynamic programming (CDP). The positions of hands are predicted by Kalman filter, and corresponding pixels to the hands are extracted by skin color filter. The center of gravity of the hands is the same as the input pattern vector. The input gesture is then recognized by matching with the reference gesture patterns using CDP. From experimental results to recognize circle shape gesture and intention gestures such as “Come on” and “Bye-bye”, we show the proposed method is feasible to the hand gesture-based human -computer interaction.
Objective: The goal of this thesis is to design the interaction structure and framework of system to recognize sign language. Background: The sign language of meaningful individual gestures is combined to construct a sentence, so it is difficult to interpret and recognize the meaning of hand gesture for system, because of the sequence of continuous gestures. This being so, in order to interpret the meaning of individual gesture correctly, the interaction structure and framework are needed so that they can segment the indication of individual gesture. Method: We analyze 700 sign language words to structuralize the sign language gesture interaction. First of all, we analyze the transformational patterns of the hand gesture. Second, we analyze the movement of the transformational patterns of the hand gesture. Third, we analyze the type of other gestures except hands. Based on this, we design a framework for sign language interaction. Results: We elicited 8 patterns of hand gesture on the basis of the fact on whether the gesture has a change from starting point to ending point. And then, we analyzed the hand movement based on 3 elements: patterns of movement, direction, and whether hand movement is repeating or not. Moreover, we defined 11 movements of other gestures except hands and classified 8 types of interaction. The framework for sign language interaction, which was designed based on this mentioned above, applies to more than 700 individual gestures of the sign language, and can be classified as an individual gesture in spite of situation which has continuous gestures. Conclusion: This study has structuralized in 3 aspects defined to analyze the transformational patterns of the starting point and the ending point of hand shape, hand movement, and other gestures except hands for sign language interaction. Based on this, we designed the framework that can recognize the individual gestures and interpret the meaning more accurately, when meaningful individual gesture is input sequence of continuous gestures. Application: When we develop the system of sign language recognition, we can apply interaction framework to it. Structuralized gesture can be used for using database of sign language, inventing an automatic recognition system, and studying on the action gestures in other areas.
This paper presents a system which recognizes dynamic hand gestures for virtual reality(VR). A dynamic hand gesture is a method of communication for a computer and human who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the same form of a gestrue produced by two persons with their hands may not have the same numerical values which are obtained through electronic sensors. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line pattern recognition.
This paper presents a system which recognizes the Korean Sign Language(KSL) and translates into normal Korean speech. A sign language is a method of communication for the deaf-mute who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the same form of a gesture produced by two signers with their hands may not produce the same numerical values when obtained through electronic sensors. In this paper, we propose a dynamic gesture recognition method based on feature analysis for efficient classification of hand motions, and on a fuzzy min-max neural network for on-line pattern recognition.
International Journal of Computer Science & Network Security
/
제22권1호
/
pp.129-138
/
2022
With the increasing reliance of computing systems in our everyday life, there is always a constant need to improve the ways users can interact with such systems in a more natural, effective, and convenient way. In the initial computing revolution, the interaction between the humans and machines have been limited. The machines were not necessarily meant to be intelligent. This begged for the need to develop systems that could automatically identify and interpret our actions. Automatic gesture recognition is one of the popular methods users can control systems with their gestures. This includes various kinds of tracking including the whole body, hands, head, face, etc. We also touch upon a different line of work including Brain-Computer Interface (BCI), Electromyography (EMG) as potential additions to the gesture recognition regime. In this work, we present an overview of several applications of automated gesture recognition systems and a brief look at the popular methods employed.
본 논문은 비전에 기반한 사람의 양팔 제스처의 모델링과 인식에 관한 연구이다. 우리는 양팔 제스처 인식을 위한 특징점의 추출에서부터 제스처의 분류에 이르는 전체적 틀을 제안하였다. 먼저, 양팔 제스처의 모델링을 위해 색채 기반의 양손 추적 방법을 제안하였고, 추출된 양손의 궤적 정보를 효과적으로 선택하게 하는 제스처 구(Phrase) 분석법을 제시하였다. 선택된 특징 점들의 시퀀스(sequence) 들로 이루어진 훈련 데이터들의 최대 공통부열(Longest Common Subsequence) 정보를 이용하여 제스처를 모델링하고 이에 따른 유사도 척도를 제안하였다. 제안된 방법론을 공항 등에서 이용하는 항공기 유도 수신호에 적용하였고, 실험을 통해 제안된 방법론의 효율성과 인식성능을 보였다.
본 논문은 키넥트 센서 (Kinect sensor)를 탑재한 Human Robot Interface (HRI) 시스템에서 손 위치 데이터를 측정하여 제스처 인식 및 처리성능을 높이기 위하여 Moving Mean-Shift 기반 사용자 손 위치 보정 알고리즘($CAPUH_{MMS}$)을 제안하였다. 또한, $CAPUH_{MMS}$의 성능을 자체 개발한 실시간 성능 시뮬레이터로 이동궤적에 대한 평균 오차 성능개선 비율을 다른 보정 기법인 $CA_{KF}$ (Kalman-Filter 기반 보정 알고리즘) 및 $CA_{LSM}$ (Least-Squares Method 기반 보정 알고리즘)의 성능과 비교하였다. 실험결과, $CAPUH_{MMS}$의 이동궤적에 대한 평균 오차 성능개선 비율은 양손 상하 운동에서 평균 19.35%으로, 이는 $CA_{KF}$ 및 $CA_{LSM}$ 보다 각각 13.88%, 16.68% 더 높은 평균 오차 성능 개선 비율을, 그리고 양손 좌우 운동에서 평균 28.54%으로 $CA_{KF}$ 및 $CA_{LSM}$ 보다 각각 9.51%, 17.31% 더 높은 평균 오차 성능 개선 비율을 나타낸 것이다.
In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.
Human-hand gestures have been used a means of communication among people for a long time, being interpreted as streams of tokens for a language. The signed language is a method of communication for hearing impaired person. Articulated gestures and postures of hands and fingers are commonly used for the signed language. This paper presents a system which recognizes the korean sign language (KSL) and translates the recognition results into a normal korean text and sound. A pair of data-gloves are used a sthe sensing device for detecting motions of hands and fingers. In this paper, we propose a dynamic gesture recognition mehtod by employing a fuzzy feature analysis method for efficient classification of hand motions, and applying a fuzzy min-max neural network to on-line pattern recognition.
본 논문에서는 가상현실의 기본 요소중의 하나인 사용자 인터페이스 분야에서 동적 손 제스처를 실시간으로 인식하는 시스템의 구현에 관하여 상술한다. 사람의 손과 손가락은 사람마다 같은 동작이라도 데이터의 변화가 다양하며 같은 동작을 반복해서 할 때에도 다른 데이터를 얻게되는등 시간에따른 변화도 존재한다. 또한, 손가락의 외형 및 물리적 구조가 사람마다 다르기 때문에 다른 두사람에 의해 만들어진 같은 손 모양도 일반적인 센싱장비에의해 측정될 때 다른 측정값을 나타낸다. 또한 동적 손제스처에서 동작의 시작과 끝을 명확히 구분하기가 매우 힘들다. 본 논문에서는 동적 손 제스처에 대해 각각의 의미있는 동작을 구분하기위해 상태 오토마타를 이용하였고, 인식 범위의 확장성을 고려하여 동적 손 제스처를 퍼지 이론을 도입한 특징 해석에의해 기본 요소인 손의 운동을 분류하고 퍼지 최대-최소 신경망을 적용하여 손의 모양을 분류함으로써 전체 손 제스처를 인식하는 시스템을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.