• 제목/요약/키워드: Hand-Gesture Recognition

검색결과 311건 처리시간 0.023초

플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현 (Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character)

  • 장명수;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.143-149
    • /
    • 2019
  • 플로팅 홀로그램은 광고나 콘서트와 같이 넓은 공간에서 현장감과 실존감이 뛰어난 3D 입체영상을 제공하면서, 3D 안경의 불편함, 시각적 피로, 공간 왜곡 현상 발생을 감소할 수 있는 기술이다. 따라서 본 논문은 좁은 공간에서도 사용가능한 플로팅 홀로그램 환경에서 캐릭터 조작을 위한 사용자 제스처 인식 시스템을 구현한다. 제안된 방법은 하르 특징기반의 캐시케이드((Harr feature-based cascade classifier) 분류기를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역을 기준으로 실시간으로 체스쳐 차영상으로부터 사용자 제스쳐의 발생 위치 정보를 이용하여 사용자 제스쳐를 인식한다. 그리고 각각 인식된 제스쳐 정보는 플로팅 홀로그램 환경에서 생성된 캐릭터 움직임을 조작하기 위하여 상응하는 행위에 맵핑된다. 제안된 플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템의 성능평가를 위해서는 플로팅 홀로그램 디스플레이 장치를 제작하고, 몸 흔들기, 걷기, 손 흔들기, 점프 등의 각 제스처에 따른 인식률을 반복 측정한 결과 평균 88%의 인식률을 보였다.

무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구 (Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation)

  • 박성식;이현주;정완균;김기훈
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.

Text classification 방법을 사용한 행동 인식, 손동작 인식 및 감정 인식 (Action recognition, hand gesture recognition, and emotion recognition using text classification method)

  • 김기덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.213-216
    • /
    • 2021
  • 본 논문에서는 Text Classification에 사용된 딥러닝 모델을 적용하여 행동 인식, 손동작 인식 및 감정 인식 방법을 제안한다. 먼저 라이브러리를 사용하여 영상에서 특징 추출 후 식을 적용하여 특징의 벡터를 저장한다. 이를 Conv1D, Transformer, GRU를 결합한 모델에 학습시킨다. 이 방법을 통해 하나의 딥러닝 모델을 사용하여 다양한 분야에 적용할 수 있다. 제안한 방법을 사용해 SYSU 3D HOI 데이터셋에서 99.66%, eNTERFACE' 05 데이터셋에 대해 99.0%, DHG-14 데이터셋에 대해 95.48%의 클래스 분류 정확도를 얻을 수 있었다.

  • PDF

원격 카메라 로봇 제어를 위한 동적 제스처 인식 (Dynamic Gesture Recognition for the Remote Camera Robot Control)

  • 이주원;이병로
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1480-1487
    • /
    • 2004
  • 본 연구에서는 원격 카메라 로봇 제어를 위한 새로운 제스처 인식 방법을 제안하였다. 제스처 인식의 전처리 단계인 동적 제스처의 세그먼테이션이며, 이를 위한 기존의 방법은 인식 대상에 대한 많은 칼라정보를 필요로 하고, 인식단계에서는 각각 제스처에 대한 많은 특징벡터들을 요구하는 단점이 있다. 이러한 단점을 개선하기 위해, 본 연구에서는 동적 제스처의 세그먼테이션을 위한 새로운 Max-Min 탐색법과 제스처 특징 추출을 위한 평균 공간 사상법과 무게중심법, 그리고 인식을 위한 다층 퍼셉트론 신경망의 구조 둥을 제안하였다 실험에서 제안된 기법의 인식율이 90%이상으로 나타났으며, 이 결과는 원격 로봇 제어를 위한 휴먼컴퓨터 인터페이스(HCI : Human Compute. Interface)장치로 사용 가능함을 보였다.

키넥트 센서 데이터를 이용한 손 제스처 인식 (Hand Gesture Recognition from Kinect Sensor Data)

  • 조선영;변혜란;이희경;차지훈
    • 방송공학회논문지
    • /
    • 제17권3호
    • /
    • pp.447-458
    • /
    • 2012
  • 본 논문에서는 키넥트 센서로부터 획득한 관절 정보를 이용하여 손 제스처를 인식하는 방법을 나타낸다. 관절 정보에 대한 관찰열을 표현하기 위한 특징으로 방향 변형에 강인한 다각도 결합 히스토그램 특징을 제안한다. 제안한 특징은 다양한 각도의 양자화 레벨을 갖는 여러 개의 각도 히스토그램들을 결합함으로써, 사람 및 환경에 따라 발생할 수 있는 제스처의 방향 변형에 강인하게 제스처를 표현한다. 또한, 다각도 결합 히스토그램으로 표현된 제스처 관찰열은 랜덤 결정 포레스트 분류기와 잘 겹합되어 높은 성능으로 제스처의 클래스를 인식한다. 키넥트 센서로부터 획득한 정적 및 동적 타입의 손 제스처 데이터셋에서 실험을 진행하였고, 다른 제스처 특징 및 분류기를 갖는 방법과의 인식 성능 비교를 통해 제안하는 방법의 우수함을 입증하였다.

KS 표준 시표를 어용한 손-동작 인식 기반의 자가 시력 측정 시스템 (A Self Visual-Acuity Testing System based on the Hand-Gesture Recognition by the KS Standard Optotype)

  • 최창열;이우범
    • 융합신호처리학회논문지
    • /
    • 제11권4호
    • /
    • pp.303-309
    • /
    • 2010
  • 본 논문에서는 KS 표준 시표(Optotype)를 이용한 자가 시력 측정의 새로운 방법을 제안한다. 제안한 시스템은 시력 측정 응답에 있어서 피검자 편의성을 위한 피검사자의 손-동작 인식(Hand-Gesture Recognition) 방법을 제공한다. 또한 검사자가에 필요 없는 컴퓨터에 의한 무작위 자동 시표 조정으로 검사자의 주관적인 판단이나 피검자의 암기에 의한 추측이 배제된 객관적 시력 측정이 가능하다. 특히, 2006년에 한국 표준 협회에서 정의한 표준 시표와 그 제시법(KS P ISO 8596)에 따라 시스템을 구현함으로써 시스템에 대한 신뢰성이 보장되고, 측정된 시력 정보의 데이터베이스 관리 기능은 피검자의 시력 정보가 필요한 전자의료기록(EMR) 시스템을 위한 전자 정보 전달이 용이하다. 구현된 시력 측정 시스템은 피검자를 대상으로 실제 시력표를 이용하여 측정한 방법과 비교 실험한 결과, 오차한계 ${\pm}1$ 시력등급 내에서 98%의 정확성을 보였다.

A Prototype Design for a Real-time VR Game with Hand Tracking Using Affordance Elements

  • Yu-Won Jeong
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.47-53
    • /
    • 2024
  • 본 연구는 어포던스 개념을 적용하여 가상 환경에서의 제스처 인식 과정에서 자연스러운 동작을 유도함으로써 상호작용과 몰입감을 향상하기 위한 인터랙티브 기술 활용을 제안한다. 이를 위해 샘플링 및 정규화 과정을 포함한 선분 인식 알고리즘을 활용하여 실제 손동작과 유사한 제스처를 인식하는 기법을 제안한다. 이러한 선분 인식은 본 논문에서 설계한 <VR Spell> 게임에서 마법진을 그리는 동작에 적용되었다. 실험 방법으로는 4개의 선분 인식 동작에 대한 인식률을 검증하였다. 본 논문은 실시간 핸드 트래킹 기술을 가상 환경, 특히 VR 게임과 같은 실감 콘텐츠에 적용하여 사용자에게 더 높은 몰입감과 재미를 추구하는 VR 게임을 제안하고자 한다.

다양한 손 제스처 인식을 위한 곡률 분석 기반의 손 특징 추출 알고리즘 (Hand Feature Extraction Algorithm Using Curvature Analysis For Recognition of Various Hand Gestures)

  • 윤홍찬;조진수
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.13-20
    • /
    • 2015
  • 본 논문에서는 손 제스처 인식에 필요한 특징 추출을 위하여 손가락의 개수뿐만 아니라 붙어있는 손가락 판별까지 인식할 수 있는 알고리즘을 제안한다. 제안하는 알고리즘은 컬러모델 기반의 피부색 범위 필터와 레이블링을 통하여 입력 영상에서 손 영역을 검출하고, 외곽선 및 특징점과 이들로부터 추출한 곡률 정보를 이용해 펴진 손가락의 개수 및 붙어있는 손가락 판별을 통한 특징을 추출하여 다양한 손 제스쳐를 인식한다. 실험결과 인식률과 처리 가능 프레임 레이트(frame rate)는 기존 알고리즘과 유사하였지만, 추출된 특징을 가지고 정의할 수 있는 제스처의 경우의 수는 기존 알고리즘보다 약 4배 정도 많아 훨씬 더 다양한 제스처를 인식할 수 있음을 알 수 있었다.

Gesture-Based Emotion Recognition by 3D-CNN and LSTM with Keyframes Selection

  • Ly, Son Thai;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • International Journal of Contents
    • /
    • 제15권4호
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, emotion recognition has been an interesting and challenging topic. Compared to facial expressions and speech modality, gesture-based emotion recognition has not received much attention with only a few efforts using traditional hand-crafted methods. These approaches require major computational costs and do not offer many opportunities for improvement as most of the science community is conducting their research based on the deep learning technique. In this paper, we propose an end-to-end deep learning approach for classifying emotions based on bodily gestures. In particular, the informative keyframes are first extracted from raw videos as input for the 3D-CNN deep network. The 3D-CNN exploits the short-term spatiotemporal information of gesture features from selected keyframes, and the convolutional LSTM networks learn the long-term feature from the features results of 3D-CNN. The experimental results on the FABO dataset exceed most of the traditional methods results and achieve state-of-the-art results for the deep learning-based technique for gesture-based emotion recognition.

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • 제2권1호
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.