• 제목/요약/키워드: Hand Feature Extraction

검색결과 71건 처리시간 0.029초

인간의 움직임 추출을 이용한 감정적인 행동 인식 시스템 개발 (Emotional Human Body Recognition by Using Extraction of Human Body from Image)

  • 송민국;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.214-216
    • /
    • 2006
  • Expressive face and human body gestures are among the main non-verbal communication channels in human-human interaction. Understanding human emotions through body gesture is one of the necessary skills both for humans and also for the computers to interact with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. Skin color information for tracking hand gesture is obtained from face detection region. We have revealed relationships between paricular body movements and specific emotions by using HMM(Hidden Markov Model) classifier. Performance evaluation of emotional human body recognition has experimented.

  • PDF

관성 센서를 이용한 착용형 공간 입력장치의 클릭 인식에 관한 연구 (A Study on Finger-click Recognition of a Wearable Input Device using Inertial Sensors)

  • 소병석;김윤상;이상국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.120-122
    • /
    • 2004
  • Wearable input device that can make free-space typewriting possible is introduced. We named this device as $SCURRY^{TM}$. To measure the angular velocity of hand and the acceleration rates at the ends of fingers, we buried MEMS inertial sensors in this keyboard. We processed sensor signals to get the information on hand movement and finger-click motion. With this signal processing, apparent finger movements were depicted over the virtual keyboard shown on output device of a target computing system. In this paper, a finger-click recognition method is proposed to improve the recognition performance for finger clicking of $SCURRY^{TM}$. The proposed method is composed of three parts including feature extraction part, valid click part, and cross-talk avoidance part. The experiments were conducted to verify the effectiveness and efficiency of the proposed algorithms.

  • PDF

인터액티브 펜-입력 디스플레이 애플리케이션을 위한 효과적인 특징점 추출법 (An Efficient Feature Point Detection for Interactive Pen-Input Display Applications)

  • 김대현;김명준
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제32권11_12호
    • /
    • pp.705-716
    • /
    • 2005
  • 패턴 인식 연구 분야에서 많은 특징점 추출 알고리즘들이 개발되었지만, 태블릿 PC나 LCD 태블릿과 같은 펜-입력 디스플레이를 위한 인터액티브 애플리케이션들은 기존과는 다른 요구사항을 가진다. 사용자 마다 다른 다양한 스케치 스타일의 대해서 세그멘테이션 및 특징점 추출을 그림을 그리는 동안 실시간에 안정적으로 수행하여야 한다. 본 논문은 사용자로부터 자유로이 입력된 펜 입력을 분할(segmentation)하기 위해 필수적인 곡률(curvature) 측정 방법을 제안한다. 이 방법은 국소적인 모양 정보(shape descriptors)만을 사용하므로 펜 입력동안 곧바로(on-the-fly) 곡률을 측정할 수 있다. 본 알고리즘은 3차원 스케치 기반 모델링 애플리케이션에서 펜 마킹 인식을 위해서 사용되었다.

손 제스처 기반의 애완용 로봇 제어 (Hand gesture based a pet robot control)

  • 박세현;김태의;권경수
    • 한국산업정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.145-154
    • /
    • 2008
  • 본 논문에서는 애완용 로봇에 장착된 카메라로부터 획득된 연속 영상에서 사용자의 손 제스처를 인식하여 로봇을 제어하는 시스템을 제안한다. 제안된 시스템은 손 검출, 특징 추출, 제스처 인식 로봇 제어의 4단계로 구성된다. 먼저 카메라로부터 입력된 영상에서 HSI 색상공간에 정의된 피부색 모델과 연결성분 분석을 이용하여 손 영역을 검출한다. 다음은 연속 영상에서 손 영역의 모양과 움직임에 따른 특징을 추출한다. 이때 의미 있는 제스처의 구분을 위해 손의 모양을 고려한다. 그 후에 손의 움직임에 의해 양자화된 심볼들을 입력으로 하는 은닉 마르코프 모델을 이용하여 손 제스처는 인식된다. 마지막으로 인식된 제스처에 대응하는 명령에 따라 애완용 로봇이 동작하게 된다. 애완용 로봇을 제어하기 위한 명령으로 앉아, 일어서, 엎드려, 악수 등의 제스처를 정의하였다. 실험결과로 제안한 시스템을 이용하여 사용자가 제스처로 애완용 로봇을 제어 할 수 있음을 보였다.

  • PDF

깊이 카메라와 SVM을 이용한 수화 인식 시스템 (Sign Language Recognition System Using SVM and Depth Camera)

  • 김기상;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.63-72
    • /
    • 2014
  • 본 논문에서는 깊이 카메라를 이용한 사용자의 손 모양 인식 시스템을 제안한다. 특히, 본 시스템에서 이용된 손 모양 템플릿은 수화 언어 중 한국어를 채택 하였다. 손 모양 인식 시스템은 손의 특징 검출과 특징들을 이용한 손 인식으로 크게 2 단계의 작업으로 나눌 수 있다. 손의 특징으로는 손가락의 개수, 길이, 손바닥의 넓이 등이 있다. 특징을 추출하기 위해 본 논문에서는 거리 변환(Distance Transform)을 이용한 손의 뼈대 검출 방법을 제안한다. 이 방법을 사용하면 기존의 윤곽선(Contour)을 이용한 손가락 검출보다 정확도 측면에서 향상된다. 손 모양 인식으로 손의 특징을 이용하여 각 분기를 잘 나눌 수 있는 결정 트리(Decision Tree)를 사용한다. 사용자의 입력을 이용하면 분기값이 정확하게 나오지 못하므로 이 분기 값을 결정하기 위해 해당 분기마다 SVM을 이용하여 분기값을 결정하였다. 실험결과에서는 기존의 연구 방법보다 제안된 방법이 특징 추출과 인식하는데 있어 더욱 개선되었음을 보인다.

학습을 이용한 손 자세의 강인한 추정 (Robust Estimation of Hand Poses Based on Learning)

  • 김설호;장석우;김계영
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1528-1534
    • /
    • 2019
  • 최근 들어, 3차원의 깊이 카메라의 대중화로 인해서 RGB 영상에서 수행되던 연구에 새로운 관심과 기회가 생겼지만 사람의 손 자세의 추정은 여전히 어려운 주제 중의 하나로 분류되고 있다. 본 논문에서는 다양하게 입력되는 3차원의 깊이 영상으로부터 사람의 손의 자세를 학습 알고리즘을 이용하여 강인하게 추정하는 방법을 제안한다. 제안된 접근 방법에서는 먼저 뼈대 기반의 손 모델을 생성한 다음, 생성된 손 모델을 3차원의 포인트 클라우드 데이터에 정렬한다. 그런 다음, 랜덤 포레스트 기반의 학습 알고리즘을 이용하여 정렬된 손 모델로부터 손의 자세를 강인하게 추정한다. 본 논문의 실험 결과에서는 제안된 접근 방법이 다양한 실내외의 환경에서 촬영된 입력 영상으로부터 사람의 손의 자세를 강인하고 빠르게 추정한다는 것을 보여준다.

HSI와 YIQ의 복합 색상정보를 이용한 차량 번호판 영역 추출 (The Extraction of Car-Licence Plates using Combined Color Information of HSI and YIQ)

  • 이화진;박형철;전병환
    • 한국정보처리학회논문지
    • /
    • 제7권12호
    • /
    • pp.3995-4003
    • /
    • 2000
  • 본 논문은 자가용과 영업용 차량의 컬러 영상에서 번호판 영역을 찾는 방법에 대한 연구이다. 번호판 영역 추출을 위해 차량 영상에서 번호판 영역은 차종에 따라 일정한 색상을 가지고 있다는 특징을 이용하였다. 본 논문에서는 단일 색상 정보에만 의존하지 않고, HSI 컬러모델의 색상 성분 H와 YIQ 컬러 모델의 색상 성분 Q를 결합하는 방식을 제안한다. 또한 처리 과정의 효율성을 높이기 위하여 입력 영상 전체를 처리하지 않고, 수평 라인별 탐색을 통해 번호판의 높이 구간을 찾도록 한다. H 성분과 Q 성분을 각각 사용한 경우와 두 색상 성분을 결합하여 추출한 경우를 비교 실험한 결과, H 성분에만 의존한 경우는 53.6%, Q 성분에만 의존한 경우는 82.1%, 결합 색상 성분에 의한 경우에는 94.6%의 추출률을 보였다.

  • PDF

광류를 사용한 빠른 자연특징 추적 (Fast Natural Feature Tracking Using Optical Flow)

  • 배병조;박종승
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.345-354
    • /
    • 2010
  • 시각기반 증강현실을 구현하기 위한 추적 방법들은 정형 패턴 마커를 가정하는 마커 추적기법과 영상 특징점을 추출하여 이를 추적하는 자연특징 추적기법으로 분류된다. 마커 추적기법은 빠른 마커의 추출 및 인식이 가능하여 모바일 기기에서도 실시간 처리가 가능하다. 한편 자연 특징 추적기법의 경우는 입력 영상의 다양성을 고려해야 하므로 계산량이 많은 처리과정을 거쳐야 한다. 따라서 저사양의 모바일 기기에서는 빠른 실시간 처리에 어려움이 있다. 기존의 자연특징 추적에서는 입력되는 카메라 영상의 매 프레임마다 특징점을 추출하고 패턴매칭 과정을 거친다. 다수의 자연특징점들을 추출하는 과정과 패턴매칭 과정은 계산량이 많아 실시간 응용에 많은 제약을 가하는 요인으로 작용한다. 특히 등록된 패턴의 개수가 증가될수록 패턴매칭 과정의 처리시간도 증가하게 된다. 본 논문에서는 이러한 단점을 해결하고자 자연특징 추적 과정에 광류를 사용하여 모바일 기기에서의 실시간 동작이 가능하도록 하였다. 패턴매칭에 사용된 특징점들은 다음의 연속 프레임에서 광류추적 기법을 적용하여 대응점들을 빠르게 찾도록 하였다. 또한 추적 과정에서 소실되는 특징점의 수에 비례하여 새로운 특징점들을 추가하여 특징점의 전체 개수는 일정 수준으로 유지되도록 하였다. 실험 결과 제안하는 추적 방법은 자연특징점 추적 시간을 상당히 단축시킬 뿐만 아니라 카메라 자세 추정 결과도 더욱 안정시킴을 보여주었다.

인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석 (Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX)

  • 전호범;고현관;이선경;송복득;김채규;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제22권5호
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법 (3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network)

  • 김정윤;이승호
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.408-415
    • /
    • 2022
  • 본 논문에서는 효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법을 제안한다. 본 논문에서 제안한 기법의 독창성은 다음과 같다. 첫 번째로, 메모리 측면에서 기존 기법보다 약 27% 더 효율적인 새로운 feature map 추출 네트워크를 사용한다. 제안하는 네트워크는 딥러닝 네트워크의 중간까지 크기 축소를 수행하지 않아, 3D 포인트 클라우드 재구축에 필요한 중요한 정보가 유실되지 않았다. 축소되지 않은 이미지 크기로 인해 발생하는 메모리 증가 문제는 채널의 개수를 줄이고 딥러닝 네트워크의 깊이를 얕게 효율적으로 구성하여 해결하였다. 두 번째로, 2D 이미지의 고해상도 feature를 보존하여 정확도를 기존 기법보다 향상시킬 수 있도록 하였다. 축소되지 않은 이미지로부터 추출한 feature map은 기존의 방법보다 자세한 정보가 담겨있어 3D 포인트 클라우드의 재구축 정확도를 향상시킬 수 있다. 세 번째로, 촬영 정보를 필요로 하지 않는 divergence loss를 사용한다. 2D 이미지뿐만 아니라 촬영 각도가 학습에 필요하다는 사항은 그만큼 데이터셋이 자세한 정보를 담고 있어야 하며 데이터셋의 구축을 어렵게 만드는 단점이다. 본 논문에서는 추가적인 촬영 정보 없이 무작위성을 통해 정보의 다양성을 늘려 3D 포인트 클라우드의 재구축 정확도가 높아질 수 있도록 하였다. 제안하는 기법의 성능을 객관적으로 평가하기 위해 ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 CD 값이 5.87, EMD 값이 5.81 FLOPs 값이 2.9G로 산출되었다. 한편, CD, EMD 수치가 낮을수록, 재구축한 3D 포인트 클라우드가 원본에 근접하는 정확도가 향상된 결과를 나타낸다. 또한, FLOPs 수치가 낮을수록 딥러닝 네트워크에 필요한 메모리가 적게 소요되는 결과를 나타낸다. 따라서, 제안하는 기법의 CD, EMD, FLOPs 성능평가 결과가 다른 논문의 기법들보다 메모리 측면에서 약 27%, 정확도 측면에서 약 6.3% 향상된 결과를 나타내어 객관적인 성능이 입증되었다.