• Title/Summary/Keyword: Hammer Peening

Search Result 10, Processing Time 0.026 seconds

A Study on the Redistribution of Residual Stress Induced by Hammer Peening after Cast Iron Welding (주철 보수 용접시 Hammer Peening에 의한 잔류응력 재분포에 관한 연구)

  • Park Yun Gi;Kim Gyeong Gyu
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.286-288
    • /
    • 2004
  • The purpose of this study is to evaluate the effects of hammer peening on the redistribution of residual stress at the repair weldment of cast iron using FEA. The FEA results were verified by comparing with experimental results. The maximum residual stress at the repair weldment of cast iron sharply decreases by hammer peening. The effect of hammer peening on the residual stress increases with a decrease of working temperature of hammer peeing.

  • PDF

Research for Fatigue Life Extension Techniques in Weldments via Pneumatic Hammer Peening (공압식 헤머피닝을 이용한 용접부 피로수명 연장기술 연구)

  • Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.842-848
    • /
    • 2009
  • Fatigue failures are often occurred at welded joints where stress concentrations are relatively high due to the joint geometry. Although employing good detail design practices by upgrading the welded detail class enables to improve the fatigue performance, in many cases, the modification of the detail may not be practicable. As an alternative, the fatigue life extension techniques that reduce the severity of the stress concentration at the weld toe region, remove imperfections and introduce local compressive welding residual stress, have been applied. These techniques are also used as definite measures to extend the fatigue life of critical welds that have failed prematurely and have been repaired. In this study, a hammer peening procedure for using commercial pneumatic chipping hammer was developed, and the effectiveness is quantitatively evaluated. The pneumatic hammer peening makes it possible to give the weld not only a favorable shape reducing the local stress concentration, but also a beneficial compressive residual stress into material surface. In the fatigue life calculation of non-load carrying cruciform specimen treated by the pneumatic hammer peening, the life was lengthened about ten times at a stress range of 240MPa, and fatigue limit increased over 65% for the as-welded specimen.

Applicability of Hammer-Peening Treatment for Fatigue Life Improvement of Fatigue Damaged Weld Joints (피로손상된 용접이음의 피로수명 향상을 위한 햄머피닝 처리법의 적용)

  • Kim, In Tae;Park, Min Ho;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.48-55
    • /
    • 2013
  • In this study, fatigue tests were performed on longitudinal out-of-plane gusset fillet welded joints and transverse non-load-carrying cruciform rib fillet welded joints, and then applicability of hammer-peening treatment on improvement of fatigue life for fatigue damaged weld joints were investigated. Fatigue tests were carried out on three types of gusset and rib welded specimens: as-welded specimens, post-weld hammer peened specimens and hammer peened specimens at 50% of as-welded specimen's fatigue life. Before and after hammer peening treatment, the geometry of weld toes and surface stresses near weld toes were measured. As a result of hammer peening treatment, compressive residual stresses of 30-83MPa were introduced near weld toes of the gusset and rib welded joints, and 130% increase in fatigue life and fatigue limit of the welded joints could be realized by hammer peening treatment at 50% fatigue life of as-welded conditions.

The Study about the Fatigue Strength Improvement Mechanism by the Processing of Fillet Welded Joint (필렛용접이음부의 후처리에 따른 피로강도 향상 메커니즘의 연구)

  • Lim, Cheong Kweon;Park, Moon Ho;Chang, Chun Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.319-327
    • /
    • 1999
  • This study makes mechanism of the fatigue strength improvement by the processing of weld toe clear for the vertical cross rib specimens which was made fillet weld joint, also it proposes to the appropriate later processing. As a result of tension fatigue test, the fatigue strength improvement could have been seen in later processed specimens than as-weld specimens. Especially fatigue crack initial life $N_c$ increased in specimens which processed grinder after hammer-peening. Also, fatigue crack propagation life $N_p$ improved more in hammer-peening specimens than as-weld or TIG specimens. It thinks that $N_c$ is because of the geometrical shape of weld toe, i.e. the relaxation of the stress concentration and also that $N_p$ is because the big compression residual stress which was introduced in the surface by hammer-peening is restraining the propagation of fatigue crack.

  • PDF

A study on Residual Stress Distribution of a Repair Weldment of Casting (주철 보수용접부의 잔류응력 분포에 관한 연구)

  • 김현수;배상득;박윤기
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.207-209
    • /
    • 2003
  • In FE analysis for residual stress of a casting, contact force between mould and casting material and gravity force must be considered for exact simulation. Preheating of a repair weldment had a little effects on the reduction of residual stress. However, preheating with hammer peening had a great deal of effects on the reduction of residual stress. A method for estimation of fatigue life for a repair weldment has been established.

  • PDF

Effect of post treatment on the fatigue strength of welded joint (용접부 피로강도에 미치는 후처리의 영향)

  • 윤중근;김현수;황주환;박동환
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.240-242
    • /
    • 2004
  • Effect of post treatment on the fatigue strength of a box weldment was investigated in order to improve fatigue life of the weldment. The post treatment applied were the smooth grinding of weld bead, weld toe grinding and hammer peening at the weld toe. The fatigue strength of the weldment after post treatment clearly increased, compared with that of the weldment in as-welded condition. After smooth grinding of weld bead, fatigue crack initiated at the root of the weldment, while fatigue crack initiated at the weld toe for the other methods.

  • PDF

Effects of post treatment on the fatigue strength of weldment (용접부 강도특성 미치는 후처리 영향)

  • Kim Hyeon Su;Park Yun Gi;Yun Jung Geun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.246-248
    • /
    • 2004
  • Effects of the post treatment on the fatigue strength of a bead-on-plate weldment were investigated in order to improve fatigue strength of the weldment. The post treatment applied were the grinding of weld toe and hammer peening at the weld toe. The fatigue strength of the weldment after post treatment increases. It is attributed to the decrease of the residual stress and the maximum stress at the weld toe by the post treatments. Based on the result, the principal factor controlling the fatigue strength of the weldment was identified as the toe shape of the bead-on-plate weldment.

  • PDF

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • It is well known that during the oxygen cutting process residual thermal stresses are produced in weldment. The local non-uniform heating and subsequent cooling which takes place during any welding process causes complex thermal strains and stresses to finally lead to residual stresses exceed to the yield stress. High tensile stresses combined with applied structural load in the region near the welded joint can given rise to distortion brittle fracture change of the fatigue strength and stress corrosion cracking. The appropriate treatment of the welded component which reduces the peak of he welding residual stresses is believed to lower risk of the fracture during the service of the structure. In this study the impact loading in oxygen cutting frame was applied to reduce the residual stress. After applying the impact loading redistribution of resid-ual stress was measured by cutting method and the effect of fatigue was tested.

  • PDF

Prediction of the fatigue life of a box weldment with residual stress (잔류응력을 고려한 box 용접부의 피로수명 예측)

  • 김현수;윤중근;김하근;박동환
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.252-254
    • /
    • 2004
  • Fatigue life a box weldment was predicted with the stress concentration and residual stress using the equation reported. In order to change the stress concentration and residual stress of the box weldment, Post treatments such as smooth grinding of weld bead, weld toe grinding and hammer peening were applied. The fatigue life of the weldment after post treatment clearly increased, which is attributed to the reduction of stress concentration and/or introduction of compressive residual stress at the weld toe. The predicted fatigue life was a relatively good agreement with the experiment for a long fatigue life, while it was underestimated for a short fatigue life.

  • PDF

A Study of Fatigue Crack Growth Behaviour for Ferrite-Bainite Dual Phase Steel (Ferrite-Bainite dual phase 강의 피로균열진전 특성 평가)

  • Kim, Deok-Geun;Cho, Dong-Pil;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • With the recent increase in size of ships and offshore structures, there are more demand for thicker plates. As the thickness increases, it is known that fatigue life of the structures decrease. To improve the fatigue life, post weld treatments techniques, such as toe grinding, TIG dressing and hammer peening, are typically employed. However, these techniques require additional construction time and production cost. Therefore, it is of crucial interest steels with longer fatigue crack growth life compared to conventional steels. This study investigates fatigue crack growth rate (FCGR) behaviours of conventional EH36 steel and Ferrite-Bainite dual phase EH36 steel (F-B steel). F-B steel is known to have improved fatigue performance associated with the existence of two different phases. Ferrite-Bainite dual phase microstructures are obtained by special thermo mechanical control process (TMCP). FCGR behaviours are investigated by a series of constant stress-controlled FCGR tests. Considering all test conditions (ambient, low temperature, high stress ratio), it is shown that FCGR of F-B steel is slower than that of conventional EH36 steel. From the tensile tests and impact tests, F-B steel exhibits higher values of strength and impact energy leading to slower FCGR.