• Title/Summary/Keyword: Hamilton의 원리

Search Result 45, Processing Time 0.027 seconds

Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades (구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • The aeroelastic stability analysis of a soft-in-plane, composite hingeless rotor blade in hover and in forward flight has been performed by combining the mixed beam method and the aeroelastic analysis system that is based on a moderate deflection beam approach. The aerodynamic forces and moments acting on the blade are obtained using the Leishman-Beddoes unsteady aerodynamic model. Hamilton's principle is used to derive the governing equations of composite helicopter blades undergoing extension, lag and flap bending, and torsion deflections. The influence of key structural modeling issues on the aeroelastic stability behavior of helicopter blades is studied. The issues include the shell wall thickness, elastic couplings and the correct treatment of constitutive assumptions in the section wall of the blade. It is found that the structural modeling effects are largely dependent on the layup geometries adopted in the section of the blade and these affect on the stability behavior in a large scale.

Two Presentation Ways of Complex Numbers Consulting History and Intellectual Interest (수학사와 지적 흥미를 고려한 복소수의 두 가지 제시 방법)

  • Lee, Gi Don;Choi, Younggi
    • Journal for History of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.259-275
    • /
    • 2013
  • It has been proposed since modern times that we need to consult the history of mathematics in teaching mathematics, and some modifications of this principle were made recently by Lakatos, Freudenthal, and Brousseau. It may be necessary to have a direction which we consult when modifying the history of mathematics for students. In this article, we analyse the elements of the cognitive interest in Hamilton's discovery of the quaternions and in the history of discovery of imaginary numbers, and we investigate the effects of these elements on attention of the students of nowadays. These works may give a direction to the historic-genetic principle in teaching mathematics.

Development of Dynamic Analysis Program for Wind Turbine Blade (풍력 발전기 블레이드의 동특성 해석 프로그램 개발)

  • Seo, Young-Su;Park, Il-Ju;Jung, Sung-Nam;Shin, Eui-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.64-67
    • /
    • 2010
  • 본 논문에서는 풍력 발전기에 사용되는 블레이드의 동특성을 해석하기 위한 프로그램을 개발하였다. 복잡한 형상의 풍력 발전기 블레이드의 모델을 단순화시키기 위하여 보 이론을 이용하였다. 블레이드의 회전 운동은 Hamilton 원리를 유한요소 보 모델을 이용하여 정식화를 수행하였다. 회전 속도에 따라 블레이드에 적용되는 원심력과 검증된 단면 물성치를 이용하여 복합재료 블레이드의 고유치 해석을 수행하였다. 기존의 상용 소프트웨어의 해석 결과와 비교를 통하여 검증 연구를 수행하였으며, 이를 토대로 본 해석 프로그램의 타당성을 보였다.

  • PDF

The Influence of Two Attactched Masses on the Stability Analysis of a Free-Free Timoshenko Beam under a Follower Force (종동력을 받는 자유 Timoshenko보의 안정성 해석에 미치는 두개의 부가질량의 영향)

  • Ryu, Bong-Jo;Sugiyama, Yoshihiko
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.39-45
    • /
    • 1995
  • 본 논문은 복수 집중질량을 갖고 제어 종동력을 받는 자유 Timoshenko보의 동적 안정성에 관한 것으로, 비행중의 미사일이나 로켓의 연료탱크, Payload등의 기계장치부를 복수의 집중질량으로 간주하여 이러한 항공우주 구조물들이 추진력인 종동력을 받을때에 대한 계의 동적 안정성을 판별한다. 수학적 모델에 대한 운동방정식은 확장된 해밀톤 원리를 이용한 유한요소법에 의해 유도되며, 복수 부가질량의 위치 및 크기변화, 센서의 위치 및 게인(gain)의 변화에 따른 계의 안정성 지도(stability maps)를 보여준다. 또한 보의 전단 변형이나 회전관성의 효과 뿐만아니라, 추질력의 방향이 제어되는 경우와 제어되지 않는 경우에 대한 최대 추진력 값이 수치 시뮬레이션을 통해 예측된다.

  • PDF

Aeroelastic Analysis of Bearingless Rotor Systems in Hover and Forward Flight (무 베어링 로터 시스템의 정지 및 전진 비행시 공력탄성학적 해석)

  • Lim, In-Gyu;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.503-508
    • /
    • 2007
  • In this study, the aeroelastic response and stability of bearingless rotors are investigated using a large deflection beam theory. The outboard main blade, flexbeam, and torque tube are all assumed to be an elastic beam undergoing arbitrary large displacements and rotations. The finite element equations of motion obtained from Hamilton's principle. Two-dimensional quasi-steady strip theory is used to evaluate aerodynamic forces. In hover, the modal approach method based on coupled rotating natural modes is used for the stability analysis. In forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The results of the full finite element analysis using the large deflection beam theory are compared with those of a previously published modal analysis using the moderate deflection-type beam theory.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

Vibration Analysis of a Beam-Column with Elastically Restrained Ends and Various Intermediate Constraints (다양한 중간구속조건을 갖는 양단 탄성구속 보-기둥의 진동해석)

  • J.M. Lee;S.H. Lee;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 1991
  • Vibration analysis methods of a beam-column with elastically restrained ends and various intermediate constraints such as rectilinear springs, rotational springs and concentrated masses are presented. Firstly, an exact method of solutions based on Hamilton's principle and Laplace transform method is shown. This method of solutions is very complicate in cases of having Intermediate constraints more than two. Therefore, Rayleigh-Ritz method using the eigenfunctions of the base system, the system without intermediate constraints, are also investigated. Extensive numerical examples carried out for comparisons with known published works show that the latter method has easy adaptability for wide varieties of boundary conditions and intermediate constraints, and gloves good accuracy for various intermediate constraints with reasonable number of terms in construction of a trial function.

  • PDF

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

A Study on the Properties of Transition Metal Nitride Coating Materials for the Recovery of Tungsten and Rare Metals (텅스텐 및 희유금속 회수를 위한 초경합금 전이금속질화물 코팅소재 특성연구)

  • Kim, Jiwoo;Kim, Myungjae;Kim, Hyokyeong;Park, Sohyun;Seo, Minkyeong;Kim, Jiwoong
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.46-55
    • /
    • 2022
  • The recycling of coated cemented carbide scraps is becoming increasingly significant for the recovery of rare metals. However, coatings consisting of Group IV and V transition metal nitrides are one of the challenging factors in obtaining high-purity materials. We investigated the structural, elastic, and mechanical properties of Group IV and V transition-metal nitrides (TiN, VN, ZrN, NbN, HfN, and TaN) using first-principle calculations. Convergence tests were performed to obtain reliable calculated results. The equilibrium structures of the nitrides were in good agreement with those of a previous study, indicating the reliability of the data. Group IV transition metal nitrides show a higher covalent bonding nature. Thus, they exhibit a higher degree of brittleness than that of Group V transition metal nitrides. In contrast, Group V transition metal nitrides show weaker resistance to shear loading and more ductile behavior than Group IV transition metal nitrides because of the metallic bonds characterized by valence electron concentration. The results of the crystal orbital Hamilton population analysis showed good agreement with the shear resistance tendencies of all transition metal nitrides.

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.