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The Influence of Two Attatched Masses on the Stability Analysis of a
Free-Free Timoshenko Beam under a Follower Force
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1. INTRODUCTION studied dynamic stability of a free-free Euler-

Bernoulli beam subjected to a controlled fol-

There has been a strong demand for the lower force. Matsumoto and Mote® investigat-
investigation into vibration and stability of a ed the time-delay effect of a follower thrust
free-free beam subjected to an end thrust on the stability of free-free beams under a
induced by a rocket motor. The end thrust is controlled follower force, Park and Mote"”
a typical nonconservative force. A lot of studied the maximum controlled follower force
papers have been published on the stability of a free-free beam carrying a concentrated
problem of nonconservative systems. Beal" mass. Kounadis and Katsikadelis” conducted
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for the coupling effects on the flutter load of
two concentrated masses of cantilevers under
a follower force, and Wu® presented the sta-
bility problems of a free-free beam under an
axial thrust. In contrast to these theoretical
works, Sugiyama and his collaborators® con-
ducted experiments on the flutter instability
of a cantilevered column subjected to a follow-
er force. The force was produced by the direct
installation of a real solid rocket motor, It is
very interesting that they confirmed the good
agreement between experiment and theoretical
prediction. However, the effects of the rotary
inertia and shear deformation of beams under
a follower force have not been investigated so
far in a due consideration. Until now, a few
researchers”™™ have studied the dynamic sta-
bility of Timoshenko beams. Particulaly the
effect of the two concentrated masses on the
stability of beams has not been investigated
sufficiently so far., The first author and
Park"”" has shown stability characteristics
according to the variation of shear deforma-
tion and rotary inertia parameters.

2. THEORETICAL ANALYSIS AND METHOD
OF CALCULATION

2.1 Mathematical Modeling

Slender rockets or missiles may have heavy
machinery components, such as fuel tanks,
pay loads and so on. These components can be
assumed as concentrated masses, Fig. 1 shows
a mathematical model of a free-free uniform
Timoshenko beam containing two concentrated
masses, It is assumed that the beam model is
subjected to a constant follower force P, The
beam has length L, bending stiffness EI, mass
per unit length A, Two additional concentrat-
ed masses M; and M, with rotary inertias J,
and Js, respectively, are located on the cen-
terline of the beam, It is assumed that one of
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Fig 1 A freefree Timoshenko beam carrying two concen-
trated masses

the two concentrated masses, M, is constant
and fixed at a specified position x; while the
other M, is variable at different position *;.

2.2 Fundamental Equations
The axial force at arbitrary point of the
beam, P*(x), as shown in Fig. 1, is given by

P*(x)= {PAx + M\ H(x - x,,) + M,H(x - x,,,)}P )
pAL + M, + M,

where H(x) is a heviside step function at ¥=0
The angle of rotation between the follower

force and undeformed * axis of the beam at x

=L, ¥(t), is controlled by the following law.

@)

where K and %, are the gain of the sensor and
the sensor location, respectively. Subscripts

W) =KY.(x,, )+ Y.(L, 1)

for transverse displacement Y denote differen-
tiation with respect to the subscripted vari-
able.

The extended Hamilton’'s principle for the
beam model is

87 dr+f 8W'dr=0 )

where the Lagrangian £ is given by
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£=T-V+W (4)

In Equations (3) and (4), the kinetic energy T,
the strain energy V, the conservative work done
W, and the nonconservative virtual work done ¢
WY for the considered problem are given by
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where kg 1s the shear coefficient and G is
the shear modulus.

Substitution of Equations (5)-(8) into Equa-
tion(3) leads to
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where Y is the lateral displacement and ¢
the bending slope of the beam.

Now, the finite element method is employed
to discretize the Equation(9) into a dynamical
system having a finite degrees of freedom.

For simplicity, it is convenient to introduce
the local coordinates and their dimensionless
quantities.

¥=x-0{-D, ¥, —(a -1l
X g =X = (@ =Dl x,=x,-(b=-DI  (10)

E=x/L Gu=x,/L &,=x,/L
E =x/L n=Y/I (1)

where i indicates the ith element of the
beam model, a; and a, denote the elements of
two attatched concentrated masses, repective-
ly, b depicts the element which the sensor is
attatched.

With the quantities defined in FEquations(10)-
(11), and for N finite elements of equal length,
the weak form of the field Equation(9) can be
written by

i JiloAFn, (&2 0n(E0) + o9, (5. 09(E,1°
+E (60 08,507+ KAGIE0)" - #50)

it ey P& &)

MIHE-E,) ) (@)
- ” P 1] ! ‘5 E\S? ! d
J:pAL+M1+M2 (1)) o (&) d
o MIPy (50" on (8,0 &
etk PAL + M, + M,

e e P o 51
_ < fleng(g’t)(l)ang(g’t)([)dE

et PAL + M, + M,

ML B ONE 1) + 7,6, (6 t) ™ OHE,, 0™
M, Brso ) (G, + 1,0, (8, 0a0) 895,010
+PUKn(E,0 +1,0L,0" (1,0 = 0 (12)

o(n, (&)~ #(EN) -

For convenience, the following non-dimen-
sional parameters are introduced:

4.2 2 z
A gL g BATE o T
gy
al"'_"'l": [31:_1_3" 0L2=-—2, Bz“—zz (14)
X, X X,
u1=_m.l., Wy = 22 V=fs (15)

L L

In\EquationS(IB)"(15), S is the shear defor-
mation parameter, R the rotary inertia para-
meter, v the sensor location, # and # are the
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locations of two concentrated masses, respec-
tively.

The solution to Equation(12) can be put into
the forms:

nEN=nE)e", 9E2)=o(E)e"

The coordinates functions 7(5) and ¢ (§) can
be written in the forms:

n@® =a" @H®, $(5)7 =a" (B

(16)

a7

where H? and @" are generalized coordinate
vectors, a'(§) is the shape function vector,
and superscript T denotes the transpose of the
matrix.

Substitution of Equations(16)-(17) into
Equation(12) results in the matrix form.

IMY* +[K]* +Q[K, ] HVE =0 18
where {V} is as follows:
VY ={H" @7} (19)

The stabiliity of the Timoshenko beam
model can be established by finding charater-
istic eigenvalues of Equation(18).

2.3 Stability Analysis

The stability of the considered system is
determined by adopting the asymptotic crite-
ria, The eigenvalue of the Equation(18) is
related to the exponents s which is defined by
the first of Equation(13). Thus, Equation (18)
gives different characteristic values of the
slightly disturbed system for every applied
load.,

If all characteristic roots, 4, are found,
then the following stability criterion can be
stated :

The system is stable, if the real parts of all
the characteristic roots A are negative value.

The system is unstable, if at least one of
the characteristic roots A has a positive real
value.
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The system is neutrally stable, if at least
one of the characteristic roots A has a zero
real part and all others are negative.

3. NUMERICAL RESULTS AND DISCUSSION

Presented results were obtained by adopting
8 uniform finite element approximation of the
Corre-
sponding eigensolutions can be obtained by
golving numerically the matrix equation of
motion. The effect of shear deformation and
rotary inertia of the beam, and the position of
the concentrated masses on the dynamic sta-
bility of the beam are investigated.

[ree-free Timoshenko beam model.

3.1 Stability without force direction control

If K=0.0, the beam under a tangential fol-
lower force has two zero eigenvalues related to
rigid body translation and rotation. However,
since the zero eigenvalues do not involve
bending of the beam, we consider the first
two non-zero eigenvalues for beam bending to
analyze stability.

The calculated stability maps are shown in
Fig. 2. In these figure, S,D,F dencte stable,
divergence and flutter regions, respectively,
The instability type depends upon the magni-
tude and location of the concentrated masses.
When the location of concentrated mass, #,
has the value less than 0,5, the flutter force
is reduced with increasing concentrated mass.
Regardless of the location of concentrated
mass, #, the widest region of stability exists
for the mass location of # =0.7. The critical
follower force was calculated according to the
variation of the locations of # and #. In this
figure, however, the second concetrated mass
was fixed to the position of # = 0.1

Dependence of stability upon the magnitude
of concentrated mass is shown in Fig. 3. It is
seen that for ¢; =0.0, 2, =0.05 £, =00, £ =00,
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Fig, 2 Stability maps of a freefree Timoshenko beam

without force direction control(® =10% R=0.0,
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Fig. 3 Critical follower force depending upon the magni-
tude of concentrated mass(S = 10°, R=0.0, J; =J,=
ﬁlzﬁz =00, 012=0.05, KZO.O)
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flutter type instability takes place for Q./7=
11.0, while the flutter force when ;=02 «
2=0.05 8 =00 =00, satisfies Q.,/7= 15,0,
Therefore Fig. 3 leads to the important conclu-
sion that additional effect of concentrated mass
results in the increase of critical follower force.

Fig. 4 shows the relationship between the
follower force and rotary inertia parameter of
the beam. The flutter force for rotary inertia
parameter R = 0.01 decreases by about 23.1
percent comparing that for R = 0.0. For the
small R £ 0,001, however, the variation of
rotary inertia of the beam affects only slight-
ly the critical follower force,

3.2 Stability with forcé direction control
It is assumed now that the follower force is
controlied by the proportional feedback of the
rotation of the beam at x=x, If K>0, only a
zero eigenvalue associated with rigid body
translation exists. Thus, it is justified again
to consider the first two nonvanishing eigen-
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Follower force (Q/T19)

Fig. 4 Critical follower force depending upon rotary
inertia of the beam in case of no direction

control8=10°, Jy=J3=F=6,=00 ¢, =02 =005
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The effect of shear deformation parameter S 3 w09
on the critical follower force is demonstrated tof : v
in Fig. 5. Comparing the results for S =10 i e F20
. . o . i 1 1 i " = .:.
and 8 = 10°, increasing shear deformation para- TS
meter results in 13.8 percent increase in the 10

critical follower force. For 3210% shear defor-
mation parameter S has negligible effect on
the critical follower force. Also by comparing
a; = 0,0 with 2,= 0.2, it is found that an addi-
tional concentrated mass results in increase of
the flutter force as the parameter S varies
from 10° to 10°%

Fig. 6 to 8 depict the type of instability(i. e.
either divergence or flutter) at sufficiently
large follower force depending on the sensor
location and a concentrated mass. Regardless
of the sensor location, divergence always

Fig. 6 Fundamental instability type of the beam with
respect to the sensor location(S = 10°% R=10.0,
Jl =J2=ﬁ1=ﬂ2 :OO, a, = 0.05, K= 10, v=), 125)
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Follower fores (QIT19)

Fig. 8 Fundamental instability type of the beam with
respect to the sensor location(S = 10°, R =0.0,
J1 =J2=51= ﬂg =0,0, @y = 005, K= 10, v= 0.875)

occurs at forces of Q,/7 =2.66 when & ={,0,
Therefore, the sensor locations determine the
instability types first encountered with
increasing follower force. In this paper, the
instability first encountered with a specified
follower force is referred to as fundamental
instability. For » = 0.125, the fundamental
instability is flutter when 1.752Q./"<2. 20.
The critical follower force is dependent upon
the magnitude of concentrated mass. The
dashed lines show the critical follower force
when the concentrated mass is added.

4, CONCLUDING REMARKS

The following conclusions were drawn
through the present investigations,

4.1 Stability without force direction control
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(1) The widest region of stability can be
realized when the location of the concentrated
mass, #, has the value of 0.7,

(2) Small rotary inertia parameter R<0, 001,
18 ineffective in increasing the critical follower
force,

4,2 Stability with force direction control

(1) Shear deformation parameter S negligi-
bly affects on the critical force for 8=10°,

(2) Type of fundamental instability depends
on the sensor location.

(3) The flutter force is increased by adding
a concentrated mass.
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