• Title/Summary/Keyword: Hall-sensor

Search Result 385, Processing Time 0.027 seconds

Expansion Joint Motion Analysis using Hall Effect Sensor and 9-Axis Sensor (Hall Effect Sensor와 9-Axis Sensor를 이용한 Expansion Joint 모션 분석)

  • Kwag, Tae-Hong;Kim, Sang-Hyun;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.347-354
    • /
    • 2021
  • In the equipment industry such as chemical plants, high temperature, high pressure, and toxic fluids move between various facilities through piping. The movement and damage of pipes due to changes in the surrounding environment such as temperature changes, vibrations, earthquakes, and ground subsidence often lead to major accidents involving personal injury. In order to prevent such an accident, various types of expansion joints are used to absorb and supplement various shocks applied to the pipe to prevent accidents in advance. Therefore, it is very important to measure the deformation of the used expansion joint and predict its lifespan to prevent a major accident. In this paper, the deformation of the expansion joint was understood as a kind of motion, and the change was measured using a Hall Effect Sensor and a 9-Axis Sensor. In addition, we studied a system that can predict the deformation of expansion joints by collecting and analyzing the measured data using a general-purpose microcomputer (Arduino Board) and C language.

DFSS-Based Design of a Hall-Effect Rotary Position Sensor (DFSS 를 이용한 홀 효과 기반 회전형 위치 센서의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This work presents the application of the DFSS (Design for Six Sigma) methodology to optimizing both the linearity and the sensitivity of the output voltage of a Hall-effect rotary position sensor. To this end, the dimensions and relative positions of a permanent magnet with reference to a Hall sensor are selected as the design factors for a full factorial design. In order to evaluate the output voltage of the rotary position sensor at each run in the experimental design, analytical solutions to the magnetic flux density were obtained using the Biot-Savart law and the relations between the magnetic flux density and the output voltage intrinsic to a Hall sensor. Through measurements of the improved output voltage of the rotary position sensors manufactured using the optimized design factors, the proposed method is shown to be simple and practical.

A Study on the Magnetic Field Analysis and Optimal Core Design of DC Current Sensor for Vehicles (자동차용 DC Current Sensor의 자장해석 및 코어 최적형상 설계에 관한 연구)

  • Lee, Hee-Sung;Park, Jong-Min;Kim, Choon-Sik;Kim, Sung-Gaun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.74-83
    • /
    • 2009
  • Recently, usage of electric and electronic system for car increases rapidly. Consequently power monitoring supplied to the system is essential for management and controlling. Generally, battery status is monitored through measuring and diagnosing the current measurement method utilizing Hall Effect. Therefore, in this paper, we analysed magnetic field to develop the solution of DC current sensor using Hall Effect which is the core of design and development. By analysing the magnetic field by FEM using Maxwell 3D software, the location of the highest output current and stable part in the Hall IC sensor was shown. Also, the optimal core design of DC current sensor using parametric and Simplex method was presented. A car battery charge and discharge process dependant on time effect on the changing of magnetic field was simulated and compared to the result from the experiment result of actual vehicle.

Fabrication and Temperature Characteristics of a SIMOX SOI Hall Sensor (SIMOX SOI 홀 센서의 제조 및 온도특성)

  • Kim, Hang-Kyoo;Shin, Jang-Kyoo;Jung, Woo-Chul;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.26-31
    • /
    • 1994
  • A SIMOX SOI Hall sensor has been fabricated and its characteristics were measured at temperatures between $20^{\circ}C$ and $260^{\circ}C$. Output Hall voltage varied linearly with supplied current, showing good linearity. The Hall voltage and the offset voltage initially increased slightly and then decreased with temperature due possibly to the electron mobility variation with temperature. Nearly constant product sensitivity throughout the temperature range indicates that this Hall sensor could be used for high temperature applications.

  • PDF

The quality evaluation of SmBCO CC by non-contact R2R Hall sensor array system (R2R Hall Sensor 측정 장치를 이용한 비접촉식 성능평가)

  • Oh, Jae-Geun;Oh, Sang-Soo;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Ho-Sub;Song, Kyu-Jeong;Lee, Nam-Jin;Moon, Seong-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • For the effective evaluation of superconducting properties of a coated conductor, with a long length, a non destructive characterization technique including a reel-to-reel (R2R) Hall measuring system have been developed. A non-contact R2R Hall sensor array system was particularly designed to measure the superconducting property of coated conductors. The superconducting properties of long length coated conductors were measured by using this device. It was demonstrated that this system was convenient to measure the intensity and distribution of the magnet field applied perpendicular to the surfaces of the coated conductors. Using this device, the defect and low critical current density(Jc) area of coated conductors could be detected in real-time measurement.

Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle (홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작)

  • Yeon, Kyoheum;Kim, Sidong;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A current sensor is one of important component which is used for the electrical current measurement during charge and discharge of the battery, and monitoring system of the motor controller in the electric and hybrid vehicle. In this study, we have developed an open loop type current sensor using GaAs Hall sensor and magnetic core has an air gap. The Hall sensor detect magnetic field produced by the current to be measured. The 3 mm air gap core was made by HGO electrical steel sheets after slitting, winding, annealing, molding, and cutting. Developed current sensor shows 0.03 % linearity within DC current range from -400 A to +400 A. Operating temperature range was extended to the range of $-40{\sim}105^{\circ}C$ using temperature compensating electronic circuit. To Improve frequency bandwidth limit due to the air flux of PCB (Printed Circuit Board) and Hall sensor, We employed an air flux compensating loop near Hall sensor or on PCB. Frequency bandwidth of the sensor was 100 kHz when we applied sine wave current of $40A{\cdot}turn$ in the frequency range from 100 Hz to 100 kHz. For the dynamic response time measurement, 5 kHz square wave current of $40A{\cdot}turn$ was applied to the sensor. Response time was calculated time reach to 90 % of saturation value and smaller than $2{\mu}s$.

A Magnetic Microsensor based on the Hall Effect in an AC Microplasma (극미세 교류 플라즈마 내에서의 홀 효과를 이용한 마이크로 자기센서)

  • Seo, Young-Ho;Han, Ki-Ho;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1266-1272
    • /
    • 2003
  • This paper presents a new class of magnetic microsensors based on the Hall effect in AC microplasma. In the theoretical study, we develop a simple model of the plasma Hall sensor and express the plasma Hall voltage as a function of magnetic field, plasma discharge field, pressure, and electrode geometry. On this basis, we have designed and fabricated magnetic microsensors using AC neon plasma. In the experiment, we have measured the Hall voltage output of the plasma microsensors for varying five different conditions, including the frequency and the magnitude of magnetic field, the frequency and the magnitude of plasma discharge voltage, and the neon pressure. The fabricated magnetic microsensors show a magnetic field sensitivity of 8.87${\pm}$0.18㎷/G with 4.48% nonlinearity.

Compensation Method of Position Signal Error with Misaligned Hall-Effect Sensors of BLDC Motor

  • Park, Joon Sung;Choi, Jun-Hyuk;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.889-897
    • /
    • 2016
  • This paper presents an improved approach for compensating rotor position signal displacement in brushless DC (BLDC) motors with misaligned hall-effect sensors. Typically, the hall-effect sensors in BLDC motors are located in each phase and positioned exactly 120 electrical degrees apart. However, limitations in mechanical tolerances make it difficult to place hall-effect sensors at the correct location. In this paper, a position error compensator to counteract the hall-effect sensor positioning error is proposed. The proposed position error compensator uses least squares error analysis to adjust the relative position error and back-EMF information to reduce the absolute offset error. The effectiveness of the proposed approach is verified through several experiments.

Anti-Pinch System for Power Window by Using Hall Sensor (홀센서를 이용한 파워 윈도우용 안티핀치 시스템)

  • Kim, S.H.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.63-70
    • /
    • 2010
  • Recently the power window system is widely used in automobiles to increase convenience of passengers and drivers. However some accidents or injuries have been caused by malfunction or misusage of the system. Therefore safety regulations of the system to cope up with these accidents have been strengthened gradually in many countries. Especially in America, since 2005, all vehicles which had power window system should be contented with FMVSS 118-S5 regulations. We suggest very low-cost anti-pinch window control system satisfying the regulation in this paper. Hall sensors are used and installed around a motor rotor with ring magnet to detect motor speed for anti-pinch. The optimum number of hall sensor and location angel of them are mainly investigated to get sufficient speed resolution for anti-pinch. Through some experiments, the validity of the suggested system was verified to satisfy the regulation.

Planar Hall Resistance Sensor for Monitoring Current

  • Kim, KunWoo;Torati, Sri Ramulu;Reddy, Venu;Yoon, SeokSoo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.151-154
    • /
    • 2014
  • Recent years have seen an increasing range of planar Hall resistive (PHR) sensor applications in the field of magnetic sensing. This study describes a new application of the PHR sensor to monitor a current. Initially, thermal drift experiments of the PHR sensor are performed, to determine the accuracy of the PHR signal output. The results of the thermal drift experiments show that there is no considerable drift in the signals attained from 0.1, 0.5, 1 and 2 mA current. Consequently, the PHR sensor provides adequate accuracy of the signal output, to perform the current monitoring experiments. The performances of the PHR sensor with bilayer and trilayer structures are then tested. The minimum detectable currents of the PHR sensor using bilayer and trilayer structures are $0.51{\mu}A$ and 54 nA, respectively. Therefore, the PHR sensor having trilayer structure is the better choice to detect ultra low current of few tens nanoampere.