• Title/Summary/Keyword: Habitat conditions

Search Result 432, Processing Time 0.02 seconds

The effects of growth medium and partial shade on early growth of milkweed (Calotropis procera L.) under drought stress

  • Taghvaei, Mansour;Kordestani, Mojtaba Dolat
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The use of growth medium is often recommended milkweed seedlings to grow and develop after emergence, and it is affected by growth medium and local habitat conditions. The effects of growth medium and partial shade on early growth of milkweed under drought stress (Calotropis procera L.) were studied in a field experiment. A split-split plot experimental design with three replications was carried out in the nursery. The main treatment plot was divided into two levels of shade; (no shading and partial shading). Sub treatment plot1 included growth medium at four levels (G1 = clay [suitable for milkweed growth], G2 = clay + sand, G3 = clay + perlite, G4 = clay + perlite + sand) and sub treatment plot2 included drought (irrigation intervals) at six levels (D1 = 2 [control], D2 = 4, D3 = 6, D4 = 8, D5 = 10, and D6 = 12 days per for three month). The results showed that drought stress significantly decreased emergence percentage, shoot length, shoot dry weight (SDW1), root dry weight (RDW), seedling dry weight (SDW2) and vigor index (VI). The use of growth medium increased all seedling characteristics. The G3 (clay + perlite) growth medium showed the highest performance, especially in terms of emergence percentage and seedling dry weight. Partial shade improved shoot length, shoot dry weight, and vigor index. Our results showed that the best treatment for high-vigor milkweed seedlings under drought stress was G3 (clay + perlite) growth medium and partial shade.

The Spatial Distribution of Quercus mongolica and Its Association with Other Tree Species in Two Quercus mongolica Stands in Mt. Jiri, Korea

  • Jang, Woong-Soon;Park, Pil-Sun;Han, Ah-Reum;Kim, Kyung-Youn;Kim, Myung-Pil;Park, Hak-Ki
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • Stand structure and spatial associations of the dominant tree species in Quercus mongolica stands were investigated to understand interspecific relationships and the persistent dominance of Q. mongolica. We examined the species composition, DBH (diameter at breast height) distribution, and spatial distribution of trees (${\geq}\;2.5\;cm$ DBH) in two permanent $100\;m\;{\times}\;100\;m$ plots in Q. mongolica-dominant stands on the western part of Mt. Jiri. Ripley's K-function was used to characterize the spatial patterns and associations of dominant tree species. Q. mongolica showed a continuous and reverse-J shaped DBH distribution with clumped spatial distribution in both study sites. Q. mongolica and Abies koreana exhibited a negative association implying potential interspecific competition. The positive spatial association between Q. mongolica and Alnus hirsuta var. sibirica and Fraxinus sieboldiana were affected by site characteristics: limited habitat conditions with a large proportion of rock surface. Our results suggest that interactions among species were complex and ranged from positive to negative. Differences in stand and site characteristics and regeneration mechanisms among the species play an important role in regulating their spatial distribution patterns, while competition between individuals also contributes to spatial patterning of these communities. The high density and the early developmental stage of spatial distribution and structural characteristics of Q. mongolica and the relatively low importance values of other species in the stands imply that Q. mongolica will remain dominant in the study sites in the near future.

Approach to the Location of Wildlife Corridors on Highways - Between Yang-jae and Pan-gyo ICs of Seoul-Busan Highway, Korea - (고속도로 생태통로 위치 선정 방법에 관한 연구 - 경부 고속도로 양재-판교 구간을 중심으로 -)

  • Shin, Su An;Ahn, Tong Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 2008
  • Ecosystem fragmentation by human intervention breaks down the biosphere habitat. Wildlife corridors connect biosphere habitats to maintain ecosystem continuity and provide animals with connecting routes. In Korea, there are 17 existing wildlife corridors on highways (as of December, 2006. Korea Freeway Corporation). There are 24 highway routes, 2,923km of highway(as of December, 2004. Korea Freeway Corporation). However, wildlife corridors are not enough and roadkill increases every year, so we need to construct additional wildlife corridors on highways. This study proposes a new approach to the location of wildlife corridors on highways, using a comprehensive analysis method for main location elements, and applies it to a study area. First, it examines traditional approaches to location of wildlife corridors through literature review and field study to analyze the present conditions of existing wildlife corridors. Then, it developes a comprehensive analysis method for the location of wildlife corridors. (1) Field investigation : investigate planting, water bodies and so on. (2) Roadkill analysis : roadkill counts, locations, time, and so on. (3) Monitoring : animal traces were surveyed and sensor cameras were installed to determine target species. (4) Simulation for animal movement : most probable wildlife dispersal was simulated by a computer software. (5) A new comprehensive approach overlays all analysis on a map and determines the location of proposed new wildlife corridors. In conclusion, it proposes an over-bridge type wildlife corridor in Dalnaenae Hill (413-414km from Busan) and an underpass type near the entrance to Gwanhyun temple way (415-416km from Busan). This new approach based on roadkill data, computer simulation of wildlife dispersal, monitoring of animals, and site analysis, may contribute to better location of wildlife corridors on highways.

The Process of River Landscape for 10years in Tan-chun Ecological Landscape Reserve (탄천 생태경관보전지역에서의 10년간 하천경관 형성과정)

  • Choi, Jung-Kwon;Choi, Mi-Kyoung;Lee, Ga-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.107-115
    • /
    • 2017
  • This study illustrated the process of bar structure and vegetation coverage to understand historical changes of riverbed and suppose adaptive management in Tan-chun ecological landscape reserve. The study site that lower reach of the Tan-chun are known as habitats of migratory bird and aquatic species with dynamic riverbed. Aerial photos from 2006 to 2016 and surveyed vegetation data in 2006 and 2016 were used by analysis of landscape changes and comparison of vegetation coverage. Study area is classified into 3 sites (A: straight site, B: meandering site, C: meandering and junction with Yangjae-cheon). The result showed that bar area of A and C sites gradually increased, B site decreased during 10 years. Also, ratio of bar area to vegetation coverage and level of vegetation coverage increased in all sites during 10 years. All sites seem to have experienced the terrestrialization with time. On the other hand, ratio of annual vegetation increased and ratio of perennial vegetation decreased in C site in 2016 compare to 2006. Because area of Japanese Hops (Humulus japonicas) as one type of annual vegetation increased, other vegetation could not grow up by its powerful expandability. It is time to make active adaptive management based on not only continuos monitoring but also revaluation of river conditions in order to enhance habitat quality and quantity in Tan-chun ecological landscape reserve.

Isolation and Characterization of Purple Non-Sulfur Bacteria, Afifella marina, Producing Large Amount of Carotenoids from Mangrove Microhabitats

  • Soon, Tan Kar;Al-Azad, Sujjat;Ransangan, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1034-1043
    • /
    • 2014
  • This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at $30{\pm}2^{\circ}C$. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight ($4.32{\pm}0.03g/l$) as well as total carotenoids ($0.783{\pm}0.002mg/g$ dry cell weight). These values were significantly higher than those for dry cell weight ($3.77{\pm}0.02g/l$) and total carotenoid content ($0.706{\pm}0.008mg/g$) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.

A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress

  • Warrad, Mona;Hassan, Yasser M.;Mohamed, Mahmoud S.M.;Hagagy, Nashwa;Al-Maghrabi, Omar A.;Selim, Samy;Saleh, Ahmed M.;AbdElgawad, Hamada
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1156-1168
    • /
    • 2020
  • Drought stress is threatening the growth and productivity of many economical crops. Therefore, it is necessary to establish innovative and efficient approaches for improving crop growth and productivity. Here we investigated the potentials of the cell-free extract of Actinobacteria (Ac) isolated from a semi-arid habitat (Al-Jouf region, Saudi Arabia) to recover the reduction in maize growth and improve the physiological stress tolerance induced by drought. Three Ac isolates were screened for production of secondary metabolites, antioxidant and antimicrobial activities. The isolate Ac3 revealed the highest levels of flavonoids, antioxidant and antimicrobial activities in addition to having abilities to produce siderophores and phytohormones. Based on seed germination experiment, the selected bioactive fraction of Ac3 cell-free extract (F2.7, containing mainly isoquercetin), increased the growth and photosynthesis rate under drought stress. Moreover, F2.7 application significantly alleviated drought stress-induced increases in H2O2, lipid peroxidation (MDA) and protein oxidation (protein carbonyls). It also increased total antioxidant power and molecular antioxidant levels (total ascorbate, glutathione and tocopherols). F2.7 improved the primary metabolism of stressed maize plants; for example, it increased in several individuals of soluble carbohydrates, organic acids, amino acids, and fatty acids. Interestingly, to reduce stress impact, F2.7 accumulated some compatible solutes including total soluble sugars, sucrose and proline. Hence, this comprehensive assessment recommends the potentials of actinobacterial cell-free extract as an alternative ecofriendly approach to improve crop growth and quality under water deficit conditions.

An Ecological Study on the Benthic macroinvertebrates in the Upper Region of the South Han River and Naktong River - Pongwha and Youngwol Region - (한강.낙동강 상류의 저서성 대형무척추동물에 관한 생태학적 연구 -봉화.영월권역을 중심으로-)

  • 배경석;원두희;유병태;김민영
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.50-68
    • /
    • 1999
  • The present study was performed to examine on the fauna and standing crops of benthic macroinvertebrates in Pongwha and Youngwol region of upper parts of south han river and Naktons river. The Actual site suvry was caried out on the two times during the April·June to October·November, 1988. Main five areas are Mt. Awrawe(1,067m), Mt. Sontal (1,236m), Mt. Munsu(1,206m), Peak Okyopong(357m) and Mt. Pungnak(760m) area. Total taxa of benthic macroinvertebrates of the study area were 118 species, 45families12 orders, 5 classes in 4 phyla. Occurrence species according to the major taxa of aquatic insects were 35 species (29.66%) in ephemeroptera, 25 species(21.19%) in trichoptera, 25 species(21.19%) hemiptera, 1 species(0.85%) in megaloptera. Non-aqautic insect were 5 species in mollusca, 3 ratio was 8.5 percent. Occurrence species(plecoptera) at clean waters were appeared 12 species at Mt. Awrawe and Sontal area. Occurrence species at each survey area was 67 species at Mt. Awrawe area, 60 species at Mt. Sontal area, 43 species at Mt. Munsu area, 37 species at Mt. P'ungnak area and 34 species at Peak Okyo area, respectively. Species diversity indices were 2.96~3.80 at Mt. Awrawe area, 2.79~3.62 at Mt. sontal area, but 2.64~3.12, 1.59~2.46 and 1.98~2.59 at, Mt. Munsu, P'ungnak and Peak Okyo area, respectively. In this region, occurrence species and individual density were smaller than that of Dong river with good habitat, but those were more abundant than that of Poseong river with similar environment conditions. Therefore, occurrence species and individual density of the present survey region were appeared as somewhat abundant.

  • PDF

Characteristics of Wave Attenuation with Coastal Wetland Vegetation (연안 습지식생에 의한 파랑감쇠 특성)

  • Lee, Seong-Dae
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • As a transition region between ocean and land, coastal wetlands are significant ecosystems that maintain water quality, provide natural habitat for a variety of species, and slow down erosion. The energy of coastal waves and storm surges are reduced by vegetation cover, which also helps to maintain wetlands through increased sediment deposition. Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection and modeling coastal hydrodynamics. In this study, laboratory experiments were used to quantify wave attenuation as a function of vegetation type as well as wave conditions. Wave attenuation characteristics were investigated under regular waves for rigid model vegetation. Laboratory hydraulic test and numerical analysis were conducted to investigate regular wave attenuation through emergent vegetation with wave steepness ak and relative water depth kh. The normalized wave attenuation was analyzed to the decay equation of Dalrymple et al.(1984) to determine the vegetation transmission coefficients, damping factor and drag coefficients. It was found that drag coefficient was better correlated to Keulegan-Carpenter number than Reynolds number and that the damping increased as wave steepness increased.

Effects of seed sources and shade on vigor of Brant's oak seedling

  • Taghvaei, Mansour
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2010
  • The use of local seed provenance is often recommended in forest restoration. Early vigor is a combination of the performance of seed germination and emergence after planting. The ability of young Brant's oak plants to grow and develop after emergence and its dependence on local habitat conditions was investigated in this study. The effects of seed source and shade on early growing seedlings of Brant's oak (Quercus brantii L.) were determined in field measurements. Seeds of Quercus brantii L. were collected from 4 forest areas (seed sources) in southern Zagros (Provinces of Kohkilouyeh-Bouyer Ahmad and Fars) at altitudes of 850, 1,100, 1,500, 2,100 m a.s.l., and planted in a nursery constructed in southwestern Iran. According to a split-plot design consisting of four blocks, each containing two main treatment plots (no shading, partial shading), each main plot was sub-divided into four sub-plots (for elevations of 850, 1,100, 1,500 and 2,100 m). Results showed that shade treatments had significant effects on emergence percentage and rate, shoot length, shoot dry weight (SDW), root dry weight (RDW), leaf area (LA), and chlorophyll content. Ecological factors also had an effect on seed performance. Altitude of seed source had a very significant effect on root length, LA, SDW, and RDW. The seeds collected from 850 m a.s.l. elevation showed the highest performance, especially in leaf area, root length, shoot dry weight, and root dry weight. Our results showed that the altitude of 850 m a.s.l. was the best for collecting Brant's oak seeds.

Establishment of high frequency plant regeneration system from leaf explants of Pinellia koreana via bulblets formation

  • Oh, Myung-Jin;Park, Jong-Mi;Lee, Bu-Youn;Choi, Pil-Son;Tae, Kyoung-Hwan;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.193-196
    • /
    • 2009
  • Pinellia koreana K-H Tae & J-H Kim is a recently discovered Korea endemic medicinal plant species whose natural habitat is rapidly destroyed by industrial development. Described in this paper are culture conditions for high frequency plant regeneration via bulblet formation from leaf explant cultures of P. koreana. Leaf explants formed white nodular structures and off-white calluses at a frequency of 91.2% when cultured on MS medium supplemented with 2 mg/L BA and 0.5 mg/L NAA. However, the frequency of white nodular structures and off-white calluses formation was slightly decreased with an increasing concentration of NAA up to 4 mg/L, where the frequency reached 31.7%. Most petiole explants did not form white nodular structures and off-white calluses except the combination treatment of 2 mg/L BA and 2 mg/L NAA. Upon transfer onto MS basal medium, over 90% of nodular structures gave rise to numerous bulblets and developed into plantlets. Plantlets regenerated from bulblets were transplanted to potting soil and grown to maturity at a survival rate of over 95% in a growth chamber. Therefore, the in vitro plant regeneration system of P. koreana obtained in this study will be useful for mass propagation and long-term preservation of genetic resources of P. koreana.