• 제목/요약/키워드: Haar-Feature

검색결과 143건 처리시간 0.02초

흡연자 검출을 위한 새로운 방법 (New Scheme for Smoker Detection)

  • 이종석;이현재;이동규;오승준
    • 한국통신학회논문지
    • /
    • 제41권9호
    • /
    • pp.1120-1131
    • /
    • 2016
  • 본 논문은 흡연으로 인한 화재사고 방지를 위해, 비디오 영상에서 흡연자를 검출하는 알고리즘을 제안한다. 흡연자의 행동을 인식하기 위해 행동 인식 기법의 계층적 방법 중 서술 기반 접근 방법을 기반으로 제안하는 알고리즘은 배경 영역 분리, 객체 검출, 이벤트 탐지, 이벤트 판단 과정으로 구성된다. 배경 영역 분리 과정으로 학습률이 다른 두 개의 가우시안 혼합 모델을 이용하여 입력 영상으로부터 고속 움직임 전경, 저속 움직임 전경 영상을 생성하고, 저속움직임 전경 영상을 chain-rule 기반 외곽선 검출 알고리즘을 통하여 객체의 위치를 추출해낸다. 위치 정보를 기반으로 흡연자의 세 가지 특징인 얼굴, 연기, 손의 움직임을 이벤트 탐지 과정에서 검출한다. Haar-like feature를 이용하여 얼굴을 검출하며, 고속 움직임 전경에서 연기의 발생 빈도수와 방향성을 반영하여 연기를 검출한다. 움직임 추정을 통해 반복적인 손의 움직임을 검출한다. 일정 구간의 비디오 시퀀스 내 객체들에 대하여, 검출된 특징들의 서술적 관계를 반영하여 각각의 객체가 흡연자인지 판단한다. 제안하는 방법은 실시간으로 여러 다른 객체들 사이에서 강인하게 흡연자를 검출한다.

PCA 얼굴인식을 활용한 전자출결 환경 구축 (Establishment of electronic attendance using PCA face recognition)

  • 박부열;진은정;이분진;이수민
    • 융합신호처리학회논문지
    • /
    • 제19권4호
    • /
    • pp.174-179
    • /
    • 2018
  • 현재 지문인식, 얼굴인식 등 다양한 보안기술들이 개발되고 있다. 하지만 많은 기술들이 개발되었음에도 불구하고 기술들을 접목시킨 분야가 상당히 제한적이다. 특히 기존에 디지털 방식의 시스템에 현대 보안기술들을 접목시키기는 쉽지만, 아날로그 방식을 사용하던 시스템에서 디지털 방식의 새로운 기술을 도입하기엔 많은 어려움이 있다. 하지만 그 시스템이 널리 사용될 수 있다면 아날로그 시스템을 디지털 시스템으로 바꿀만한 충분한 가치가 있다. 그렇기 때문에 선택한 주제가 전자출결 시스템이다. 본 논문은 라즈베리파이를 활용하여 출입문에 카메라를 설치하여 얼굴 감지를 위한 Haar-like feature방식의 트레이닝과, 주성분 분석(PCA)방식 중의 Eigenface 방식의 얼굴인식으로 실시간 얼굴인식을 수행하여 출결을 수행한다. 출결 된 데이터들은 무선통신을 활용하여 스마트폰으로 전송하고 스마트폰에선 그 정보들을 받고 관리할 수 있는 관자용 어플리케이션 제작까지 완료하였다.

전경픽셀 히스토그램 분석 기반의 머리영역 검출 기법 (Head Detection based on Foreground Pixel Histogram Analysis)

  • 최유주;손향경;박정민;문남미
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.179-186
    • /
    • 2009
  • 본 논문은 기존의 Haar 유사 특징 기반 얼굴검출 기법의 한계를 보완하는 수평 및 수직방향픽셀 히스토그램 분석 기반의 머리영역 검출 방법을 제안한다. 제안 기법은 배경차감 영상에서 수평과 수직 방향으로 전경 픽셀의 수를 표시하는 픽셀 히스토그램 영상을 생성한 후, 해리스 코너 검출기법을 이용하여 머리 영역을 특징짓는 특징점을 검출한다. 제안한 방법은 기존의 얼굴 특성 기반 검출에 비해 머리를 포함한 몸체의 수직과 수평 픽셀 히스토그램을 이용함으로써 정면 영상뿐만 아니라 측면 및 후면 영상이나 이마가 가려진 입력 영상의 경우에도 머리 영역을 안정적으로 검출하는 결과를 보여주었다.

픽셀 방향코드와 룩업테이블 분류기를 이용한 얼굴 검출 (Face Detection Using Pixel Direction Code and Look-Up Table Classifier)

  • 임길택;강현우;한병길;이종택
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.261-268
    • /
    • 2014
  • Face detection is essential to the full automation of face image processing application system such as face recognition, facial expression recognition, age estimation and gender identification. It is found that local image features which includes Haar-like, LBP, and MCT and the Adaboost algorithm for classifier combination are very effective for real time face detection. In this paper, we present a face detection method using local pixel direction code(PDC) feature and lookup table classifiers. The proposed PDC feature is much more effective to dectect the faces than the existing local binary structural features such as MCT and LBP. We found that our method's classification rate as well as detection rate under equal false positive rate are higher than conventional one.

A Real-time Face Tracking Algorithm using Improved CamShift with Depth Information

  • Lee, Jun-Hwan;Jung, Hyun-jo;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.2067-2078
    • /
    • 2017
  • In this paper, a new face tracking algorithm is proposed. The CamShift (Continuously adaptive mean SHIFT) algorithm shows unstable tracking when there exist objects with similar color to that of face in the background. This drawback of the CamShift is resolved by the proposed algorithm using Kinect's pixel-by-pixel depth information and the skin detection method to extract candidate skin regions in HSV color space. Additionally, even when the target face is disappeared, or occluded, the proposed algorithm makes it robust to this occlusion by the feature point matching. Through experimental results, it is shown that the proposed algorithm is superior in tracking performance to that of existing TLD (Tracking-Learning-Detection) algorithm, and offers faster processing speed. Also, it overcomes all the existing shortfalls of CamShift with almost comparable processing time.

Drowsiness Detection Method during Driving by using Infrared and Depth Pictures

  • You, Gang-chon;Park, Do-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • 제5권3호
    • /
    • pp.189-194
    • /
    • 2018
  • In this paper, we propose the drowsiness detection method for car driver. This paper determines whether or not the driver's eyes are closed using the depth and infrared videos. The proposed method has the advantage to detect drowsiness without being affected by illumination. The proposed method detects a face in the depth picture by using the fact that the nose is closest to the camera. The driver's eyes are detected by using the extraction of harr-like feature within the detected face region. This method considers to be drowsiness if eyes are closed for a certain period of time. Simulation results show the drowsiness detection performance for the proposed method.

웨이블릿변환과 상관관계를 이용한 지문의 분류 및 인식 (Fingerprint Classification and Identification Using Wavelet Transform and Correlation)

  • 이석원;남부희
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.390-395
    • /
    • 2000
  • We present a fingerprint identification algorithm using the wavelet transform and correlation. The wavelet transform is used because of its simple operation to extract fingerprint minutiaes features for fingerprint classification. We perform the rowwise 1-D wavelet transform for a $256\times256$ fingerprint image to get a $1\times256$ column vector using the Haar wavelet and repeat 1-D wavelet transform for a 1$\times$256 column vector to get a $1\times4$ feature vector. Using PNN(Probabilistic Neural Network), we select the possible candidates from the stored feature vectors for fingerprint images. For those candidates, we compute the correlation between the input binary image and the target binary image to find the most similar fingerprint image. The proposed algorithm may be the key to a low cost fingerprint identification system that can be operated on a small computer because it does not need a large memory size and much computation.

  • PDF

실시간 얼굴인식 시스템 구현을 위한 비올라존스 알고리즘 개선 (Improvement in Viola-Jones method for Real-Time Face Recognition System)

  • 홍영민;이인성;박종순;조용성;김창범
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.143-147
    • /
    • 2012
  • The rapid growth of camera technology can provide various types of information which was not previously provided. Furthermore, IP camera which has rapid data transfer rate and high resolution particularly provide a lot of useful functions beyond the existing simple surveillance capabilities. We are developing Real-Time Face Recognition Access Control System based on the camera technology, and improvement of face detection and recognition algorithms are vitally needed to realize that system. In this paper, we proposes a method to improve the computing speed and detection rate by adding new features to the existing Viola-Jones detection algorithm.

웨이브렛 변환과 LVQ를 이용한 홍채인식 시스템 (Human Iris Recognition System using Wavelet Transform and LVQ)

  • 이관용;임신영;조성원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.389-398
    • /
    • 2000
  • The popular methods to check the identity of individuals include passwords and ID cards. These conventional method for user identification and authentication are not altogether reliable because they can be stolen and forgotten. As an alternative of the existing methods, biometric technology has been paid much attention for the last few decades. In this paper, we propose an efficient system for recognizing the identity of a living person by analyzing iris patterns which have a high level of stability and distinctiveness than other biometric measurements. The proposed system is based on wavelet transform and a competitive neural network with the improved mechanisms. After preprocessing the iris data acquired through a CCD camera, feature vectors are extracted by using Haar wavelet transform. LVQ(Learning Vector Quantization) is exploited to classify these feature vectors. We improve the overall performance of the proposed system by optimizing the size of feature vectors and by introducing an efficient initialization of the weight vectors and a new method for determining the winner in order to increase the recognition accuracy of LVQ. From the experiments, we confirmed that the proposed system has a great potential of being applied to real applications in an efficient and effective way.

  • PDF

스테고 잡음 확대를 위한 영상 분해와 동시 발생 확률에 기반한 스테그분석 (Steganalysis Based on Image Decomposition for Stego Noise Expansion and Co-occurrence Probability)

  • 박태희;김재호;엄일규
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.94-101
    • /
    • 2012
  • 본 논문은 커버 영상으로부터 스테고 영상의 검출율을 높이기 위한 개선된 스테그분석 기법을 제안한다. 스테그분석에서 스테고 영상의 검출율을 높이려면 데이터 은닉에 의해 야기되는 작은 변화가 증폭되어야 한다. 이를 위해 본 논문에서는 두 단계의 방법을 통해 커버 영상과 스테고 영상의 특징 벡터를 추출한다. 먼저 스테고 잡음을 두배 이상 확대하기 위해 주어진 영상을 상위 4비트와 하위 4비트로 각각 분해한다. 각 분해된 영상에 대하여 3-레벨 Haar 웨이블릿 변환을 통해 총 12개의 부밴드를 생성하고, 생성된 부밴드에 대하여 동일 스케일 상에서 다른 부밴드 계수간의 동시발생 확률을 구한다. 웨이블릿 영역에서 부 밴드간 계수의 동시발생 확률은 데이터 은닉에 의해 상관성에 영향을 받게 되므로 커버 및 스테고 영상을 구분하기 위한 특징으로 사용될 수 있다. 본 논문에서는 동시발생 확률의 특성함수에 대한 모멘트를 구하여 특징 벡터로 사용한다. 추출된 특징 벡터는 신경망회로망 분류기를 사용하여 커버 영상과 스테고 영상을 학습하고 판별한다. 제안 방법의 성능평가를 위해 S-tool에 의한 LSB 및 COX의 SS, F5 임베딩 방법에 의한 다양한 삽입률의 스테고 영상을 사용하였으며, 실험결과 제안한 기법은 기존의 기법에 비해 비밀 메시지 삽입 유무의 검출율을 향상시킬 뿐만 아니라 판별의 정확도가 높음을 확인할 수 있었다.