• Title/Summary/Keyword: HVPE(hydride vapor phase epitaxy)

Search Result 64, Processing Time 0.023 seconds

The Properties of GaN Grown by BVPE Method on the Si(111) Substrate with Pre-deposited Al Layer (Al 박막이 증착 된 Si(111) 기판 위에 HVPE 방법으로 성장한 GaN의 특성)

  • Shin Dae Hyun;Baek Shin Young;Lee Chang Min;Yi Sam Nyung;Kang Nam Lyong;Park Seoung Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2005
  • In this work, we tried to improve the fabrication process in HVPE (Hydride Vapor Phase Epitaxy) system by using Si(111) substrate with pre-deposited Al layer. PL measurements was done for samples with and without pre-deposited Al on Si and it was also examined the dependence of the optical characteristic properties on AlN buffer thickness for GaN/AIN/Al/Si. A sample with thin Al nucleation layer on Si substrate reveals a better optical property than the other. And it suggests that the thickness for AlN buffer layer with thin Al nucleation layer on Si(111) substrate is most proper about $260{\AA}$ to grow GaN in HVPE system. The surface morphology of GaN clearly shows the hexagonal crystallization. The XRD pattern showed strong peak at GaN{0001} direction.

The growth and defects of GaN film by hydride vapor phase epitaxy (HVPE GaN film의 성장과 결함)

  • 이성국;박성수;한재용
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • The 9 $\mu\textrm{m}$ GaN films on sapphire substrate were grown by Hydride vapor phase epitaxy. Dislocation density of these GaN films was measured by TEM. GaN film with crack free and mirror surface was directly grown on sapphire substrate. The dislocation density of this GaN film was $2{\times}10^9/cm^2$. The surface of GaN film on patterned GaN layer also presented a smooth mirror. But a part of GaN surface included holes because of incomplete coalescence. The dislocation density of GaN film above the mask region was lower than that in the window region. Especially, the dislocation density in the region between mask center and window region was close to dislocation free. The average dislocation density of ELO GaN was $8{\times}10^7/cm^2$.

  • PDF

Polarity of freestanding GaN grown by hydride vapor phase epitaxy

  • Lee, Kyoyeol;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.106-111
    • /
    • 2001
  • The freestanding GaN substrates were grown by hydride vapor phase epitaxy (HVPE) on (0001) sapphire substrate and prepared by using laser induced lift-off. After a mechanical polishing on both Ga and N-surfaces of GaN films with 100$\mu\textrm{m}$ thick, their polarities have been investigated by using chemical etching in phosphoric acid solution, 3 dimensional surface profiler and Auger electron spectroscopy (AES). The composition of the GaN film measured by AES indicted that Ga and N terminated surfaces have the different N/Ga peak ratio of 0.74 and 0.97, respectively. Ga-face and N-face of GaN revealed quite different chemical properties: the polar surfaces corresponding to (0001) plane are resistant to a phosphoric acid etching whereas N-polar surfaces corresponding to(0001) are chemically active.

  • PDF

GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates (실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구)

  • Ha, Jun-Seok;Park, Jong-Sung;Song, Oh-Sung;Yao, T.;Jang, Ji-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.159-164
    • /
    • 2009
  • We fabricated 40 nm-thick cobalt silicide ($CoSi_2$) as a buffer layer, on p-type Si(100) and Si(111) substrates to investigate the possibility of GaN epitaxial growth on $CoSi_2$/Si substrates. We deposited GaN using a HVPE (hydride vapor phase epitaxy) with two processes of process I ($850^{\circ}C$-12 minutes + $1080^{\circ}C$-30 minutes) and process II ($557^{\circ}C$-5 minutes + $900^{\circ}C$-5 minutes) on $CoSi_2$/Si substrates. An optical microscopy, FE-SEM, AFM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. In case of process I, it showed no GaN epitaxial growth. However, in process II, it showed that GaN epitaxial growth occurred. Especially, in process II, GaN layer showed selfaligned substrate separation from silicon substrate. Through XRD ${\omega}$-scan of GaN <0002> direction, we confirmed that the combination of cobalt silicide and Si(100) as a buffer and HVPE at low temperature (process II) was helpful for GaN epitaxy growth.

Optical Properties of HVPE Grown Thick-film GaN on $MgAl_2O_4$ Substrate ($MgAl_2O_4$ 기판위에 HVPE법으로 성장된 후막 GaN의 광학적 특성)

  • Lee, Yeong-Ju;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.526-531
    • /
    • 1998
  • A hydride vapor phase epitaxy (HVPE) method was performed to grow the $10~240\mu{m}$ thick GaN films on (111) spinel $MgAl_2O_4$ substrate. The GaN films on $MgAl_2O_4$ substrate revealed a photoluminescence (PL) characteristics of the impurity doped GaN by the out-diffusion and auto-doping of Mg from $MgAl_2O_4$ substrate during GaN growth. The PL spectrum measured at 10K consists of free and bound excitons related recombination transitions and impurity-related donor-acceptor pair recombination and its phonon replicas. However, the deep-level related yellow band emission was not observed. The peak energy of neutral donor bound excitonic emission and the frequency of Raman $E_2$ mode were exponentially decreased with increasing the GaN thicknesses. and the frequency of E, Raman mode was shifted with the relation of $\Delta$$\omega$=3.93$\sigma$($cm^{-1}$/GPa), where l1 (GPa) is the residual strain in the GaN epilayers.

  • PDF

Investigation of InN nanograins grown by hydride vapor phase epitaxy (수소 화물 기상 증착법을 이용한 InN 나노 알갱이 성장에 관한 연구)

  • Jean, Jai-Weon;Lee, Sang-Hwa;Kim, Chin-Kyo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.479-482
    • /
    • 2007
  • InN nanograins were directly grown on $0.3^{\circ}$-miscut (toward M-plane) c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) and their growth characteristics were investigated by utilizing x-ray scattering. Depending on the various growth parameters, the formation of InN was sensitively influenced. Six samples were grown by changing HCl flow rate, the substrate temperature and Ga/In source zone temperature. All the samples were grown on unintentionally $NH_3-pretreated$ sapphire substrates. By increasing the flow rate of HCl from 10 sccm to 20 sccm, the formation of GaN grains with different orientations was observed. On the other hand, when the substrate temperature was raised from $680^{\circ}C$ to $760^{\circ}C$, the increased substrate temperature dramatically suppressed the formation of InN. A similar behavior was observed for the samples grown with different source zone temperatures. By decreasing the source zone temperature from $460^{\circ}C$ to $420^{\circ}C$, a similar behavior was observed.

Growth of Large GaN Substrate with Hydride Vapor Phase Epitaxy (HVPE법에 의해 대구경 GaN 기판 성장)

  • Kim, Chong-Don;Ko, Jung-Eun;Jo, Chul-Soo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.99-99
    • /
    • 2008
  • To grow the large diameter GaN with high structure and optical quality has been obtained by hydride vapor phase epitaxy(HVPE) method. In addition to the nitridation of $Al_2O_3$ substrate, we also developed a "step-growth process" to reduce or to eliminate the bowing of the GaN substrate caused by thermal mismatch during cool down after growth. The as-grown 380um thickness and 75mm diameter GaN layer was separated from the sapphire substrate by laser-induced lift-off process at $600^{\circ}C$. A problem with the free-standing wafer is the typically large bowing of such a wafer, due to the built in the defect concentration near GaN-sapphire interface. A polished G-surface of the GaN substrate were characterized by room temperature Double crystal X-ray diffraction (DCXRD), photoluminescence(PL) measurement, giving rise to the full-width at half maximum(FWHM) of the rocking curve of about 107 arcsec and dislocation density of $6.2\times10^6/cm^2$.

  • PDF

Growth of InGaN/AlGaN heterostructure by mixed-source HVPE with multi-sliding boat system (Multi-sliding boat 방식을 이용한 혼합소스 HVPE에 의한 InGaN/AlGaN 이종 접합구조의 성장)

  • Jang, K.S.;Kim, K.H.;Hwang, S.L.;Jeon, H.S.;Choi, W.J.;Yang, M.;Ahn, H.S.;Kim, S.W.;Yoo, J.;Lee, S.M.;Koike, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • The selective growth of InCaN/AlGaN light emitting diodes was performed by mixed-source hydride vapor phase epitaxy (HVPE). In order to grow the InGaN/AlGaN heterosturcture consecutively, a special designed multi-sliding boat was employed in our mixed-source HVPE system. Room temperature electroluminescence spectum of the SAG-InGaN/AlGaN LED shows an emission peak wavelength of 425 nm at injection current 20 mA. We suggest that the mixed-source HVPE method with multi-sliding boat system is possible to be one of the growth methods of III-nitrides LEDs.

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

Properties of GaN Film Grown on AlN/PSS Template by Hydride Vapor Phase Epitaxy (AlN/PSS Template 위에 HVPE로 성장한 GaN 막의 특성)

  • Son, Hoki;Lee, YoungJin;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.348-352
    • /
    • 2016
  • In this paper, GaN film was grown on AlN/PSS by hydride vapor phase epitaxy compared with GaN on planar sapphire. Thin AlN layer for buffer layer was deposited on patterned sapphire substrate (PSS) by metal organic chemical vapor deposition. Surface roughness of GaN/AlN on PSS was remarkably decreased from 28.31 to 5.53 nm. Transmittance of GaN/AlN grown on PSS was lower than that of planar sapphire at entire range. XRD spectra of GaN/AlN grown on PSS corresponded the wurzite structure and c-axis oriented. The full width at half maximum (FWHM) values of ${\omega}$-scan X-ray rocking curve (XRC) for GaN/AlN grown on PSS were 196 and 208 arcsec for symmetric (0 0 2) and asymmetric (1 0 2), respectively. FWHM of GaN on AlN/PSS was improved more than 50% because of lateral overgrowth and AlN buffer effect.