• Title/Summary/Keyword: HTU

Search Result 6, Processing Time 0.023 seconds

Effect of different concentrations of hypotaurine on melanosis and quality of Pacific white shrimp (Penaeus vannamei) during refrigeration

  • Zhou, Jiaying;Ying, Yubin;Zhou, Yaqi;Li, Gaoshang;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.231-242
    • /
    • 2022
  • Effect of different concentrations of hypotaurine (HTU) on melanosis and quality of shrimps during 10 d storage in ice were studied. During refrigeration, the total plate count and total volatile basic nitrogen of shrimps treated with 20 g/L HTU were the lowest, and the hardness and microstructure were the best. Moreover, the score of melanoses, pH and total bile acid of shrimps treated with 20 g/L HTU were also low. Sensory evaluation showed that HTU treatment could make the shelf life of shrimps 3-4 days longer compared with the control. Based on the above physical and chemical indexes, 20 g/L HTU showed great potential as a safe inhibitor in the treatment of shrimps' melanosis.

Simultaneous Removal of $SO_2/NO$ using liquid Homogeneous Catalyst (액상 균일질 촉매를 이용한 $SO_2/NO$ 동시 처리 기술 개발)

  • Jung, Seung-Ho;Bae, Jin-Youl;Park, Don-Hee;Jung, Kyung-Hoon;Cha, Jin-Myeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.62-67
    • /
    • 2007
  • It was investigated to develop the technology for simultaneous removal of $SO_2/NO$ in flue gas using liquid homogeneous catalyst. Test was carried out using a bench scale and a pilot scale experiment. The investigation led to the following results: 1) Removal efficiency of $SO_2$ gas showed good results regardless of operating condition. Removal efficiency of NO gas, however, proportionally increased with higher packing height, lower concentration and larger injection rate of catalyst 2) The optimum design parameters for simultaneous removal of $SO_2/NO$ gas using Fe(II)-EDTA catalyst were as follow: HTU(height of transfer unit) = 0.5 m, liquid gas ratio = 20 $L/m^3$, NTU (number of transfer unit) = 3 stages, cross dimension of scrubber=0.025 $m^2$ 3) The removal efficiencies of $SO_2$ and NO were 95% and 81%, repletely. 4) The high HTU is advantageous on removal of the NO, but the excessive HTU diminishes operating efficiency. Consequently, it is important to decide the HTU of optimum.

Development of Relationship between Air Quality and Rain Acidity (대기질 - 강우산성도 관계식의 개발)

  • 구자공;유동준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.45-51
    • /
    • 1986
  • The simple and precise model for the estimation of rain acidity from the ambient air quality was developed using the theory of wet scrubber and the chemical equilibria of $SO_2, CO_2, and H_2O$ system. From the measured mixing height, and from the developed relationship between NTU (=number of transfer units) and the concentration of $SO_2$(aq) in rain drops, the HTU (= height equivalent to one transfer unit, i.e. mass transfer resistance) was estimated, and validated with the field-measured data. In Seoul, Korea where the effect of $SO_2$ on rainfall acidity is as high as 84% and the average mixing height is 1 km, the average HTU of $SO_2$ system was found to be 191.5m. The important parameters affecting HTU were identified as rainfall intensity and initial ambient concentration of $SO_2$, and their effects on the value of overall volumetric mass transfer coefficient were quantified.

  • PDF

A study on Removal of $NH_3$ Gas in a Towar using a Ralu-Pack 250YC as a Packing Material (Ralu-Pack 250YC를 충전한 충전탑에서 암모니아가스 제거에 관한 연구)

  • 김석택
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.389-392
    • /
    • 2000
  • In this study a packed tower was selected for the treatment apparatus of $NH_3$ gas produced in industry. Formerly latticework packing has been used in preventive facility of treatment of $NH_3$ gas. However recently metallic Ralu-Pack 250YC. structured packing is usually being used in petrochemical production plant. This study is for the application the packing to the $NH_3$ gas treatment in wet scrubbing process. In Air/water system hydraulic pressure drop dependent of specific liquid load and gas capacity factor was continuous and parallel from graph. The tower height can be determuined by the number of transfer unit and the height of transfer unit influenced on liquid distribution.

  • PDF

A Study on Hydraulic Behavior and Mass Transfer by Absorption in Packing Tower (충전탑에서 흡수에 따른 물질전달과 수력학적 거동에 관한 연구)

  • 김석택
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.393-396
    • /
    • 2000
  • Packing tower has been used in the chemical industry and the protection of environment for a long time. In the view of environmental protection purification of exhaust gas can be performance effective by gas absorption in counter-current packing tower. In this study characteristics of hydraulic and mass transfer were investigated in D. $0.3m {\times} H. 1.4m$ packing tower with 50mn plastic Hiflow-ring. This study was carried out "Test systems were experimented in conditions of Air, $Air/H_2O. NH_3-Air/H_2O, NH_3-Air/H_2O-H_2SO_4$ and $SO_2-Air/H_2O-NaOH$ under steady state" The extent of test included dry and wetting pressure drop physical law separation efficiency and hold-up as function of gas and liquid load.quid load.

  • PDF

A Study on Hydraulic Behavior and Desorption of $CO_2$ Gas in the Counter-current Packing Tower (역류식 충전탑에서 이산화탄소 탈착과 수력학절 거동에 관한 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.94-100
    • /
    • 2000
  • This study was carried out to interpret hydraulic behavior and CO2 gas desorption in counter-current packing tower which packed 50mm plastic Hiflow-ring. The results are as follow : To compare with conventional packing, 50mm Hiflow-ring could save energy because of low pressure drop under high load. As relative error between calculated value and investigated value was less than 6% in the loading point and flooding point we found that we are predict results mathematically which occur in packing tower. The unique magnitude of packing which was used are as follows. $C_L=2.1{\times}10^{-4}$, n=0.787 so we can predict efficiency which occur

  • PDF