• Title/Summary/Keyword: HTS tapes

Search Result 215, Processing Time 0.036 seconds

AC Loss Characteristics of Multifilamentary HTS Tapes

  • Amemiya, Naoyuki
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.69-72
    • /
    • 2000
  • AC losses in multifilamentary HTS tapes can be classified to hysteresis loss, coupling loss, and eddy current loss from the viewpoint of their generation mechanism. From the viewpoint of the major magnetic field component generating them, they can be classified to magnetization loss, transport loss, and total loss. Dividing superconductor to fine filaments, twisting filaments bundle and increasing transverse resistivity are effectively reduce magnetization loss and total loss when the external magnetic field is relatively large. Recently, twisted multifilamentary Bi 2223 tapes with pure silver matrix were fabricated and the reduction of magnetization loss was proved experimentally in the parallel magnetic field to the tape wide face. However, when the perpendicular magnetic field is applied, increasing transverse resistivity is required essentially to reduce the AC losses. The transverse resistivity was increased successfully by the introduction of resistive barrier between filaments.

  • PDF

Transport Property of Externally Reinforced Bi-2223 Superconducting Tape under Axial Fatigue Loading

  • Shin, Hyung-Seop;John-Ryan C. Dizon;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.22-26
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, Ie, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the Ie degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the Ie degradation mechanism in fatigued Bi-2223 tapes.

Fabrication and the transportation properties of 1000A class multistrand conductor for HTS power cable (고온초전도 전력케이블용 1000A급 multistrand conductor의 제조 및 특성분석)

  • Park, S.C.;Yoo, J.M.;Ko, J.W.;Kim, H.D.;Kang, S.C.;Chung, H.S.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.115-119
    • /
    • 2001
  • For the fabrication of HTS power cable, multifilamentary Bi-2223/Ag tapes have been prepared using the powder-in-tube (PIT) process. After final heat treatment, these tapes have $I_{c}$ value of 43A, and$ J_{c}$ value of $28,000A/\textrm{cm}^2$(77K, 0T). Prototype 1000A class multistrand conductor(length~1m) was fabricated using these tapes(length~300m). This multistrand conductor was impregnated with low-temperature epoxy. The transportation properties of prototype 1000A class multistrand conductor has been evaluated at 77K, and yielding a current capacity up to 1200A.A.A.

  • PDF

Transport current Losses of the HTS Stacked Tapes at Various Gap between Tapes (고온초전도 적층선재에서의 층간 거리에 따른 전송전류 손실)

  • 임형우;이승욱;이희준;차귀수;이지광
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.254-256
    • /
    • 2003
  • AC loss is one of the important superconducting power machine that we have to consider deeply using the stack wires with the HTS. AC magnetic field is occurred around the wires when the electric current is conducted to the stack wires. It also brings electric field to the wires and occurs self field loss, whose quantity is appeared differently by distance of the stack wires. In this paper, transport current losses of a stack short sample of HTS were compared with Norris equation and measured value.

  • PDF

AC loss comparison of Bi-2223 and coated conductor HTS tapes under bending

  • Kim, Hae-Joon;Cho, Jeon-Wook;Sim, Ki-Deok;Kim, Jae-Ho;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Soo-Gil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.41-45
    • /
    • 2007
  • Superconductor is developed for applications in high-power devices such as power-transmission cables, transformers, motor and generators. In such applications, HTS tapes are subjected to various kinds of stress or strain. AC loss is also important consideration for many large-scale superconducting devices. In the fabrication of the devices, the critical current $(I_c)$ of the high temperature superconductor degrades due to many reasons including the tension applied by bending and thermal contraction. These bending or tension reduces the $I_c$ of superconducting wire and the $I_c$ degradation affects the AC loss of the wire. The $I_c$ degradation and AC loss (self field loss) of Bi-2223 HTS and Coated conductor were measured under tension and bending conditions at 77K and self-field.

Speed-Torque Characteristics of the HTS Squirrel Gage Induction Motor (고온초전도 농형유도전동기의 속도-토크 특성시험)

  • 심정욱;박명진;이광연;차귀수;이지광
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.236-238
    • /
    • 2003
  • The speed-torque characteristics of the squirrel cage induction motor is determined by the rotor resistance. This paper presents the fabrication and test results of an HTS induction motor. Conventional end rings and short bars were replaced with HTS tapes in the rotor. Test result shows that the speeds of the HTS induction motor were the same with synchronous speed up to 10Nm.

  • PDF

Fabrication and evaluation of superconducting properties of HIS PIT long tapes (고온초전도 PIT 장선재 제조 및 특성 평가)

  • Ha, Hong-Soo;Lee, Dong-Hoon;Yang, Joo-Saeng;Hwang, Sun-Yuk;Choi, Jung-Kyu;Kim, Sang-Chul;Ha, Dong-Woo;Oh, Sang-Soo;Kwon, Young-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.597-600
    • /
    • 2003
  • Bi-2223/Ag HTS wires have been fabricated by the PIT(powder in tube)process. Intermediate annealing was carried out to increase the homogenization and uniformity of the superconducting filaments embedded in the silver matrix during the deformation process that is important to sustain the engineering critical current density in long superconducting wire. Intermediate annealing act to release the deformation hardening of the superconducting wires during drawing process. Rolling parameters were investigated to roll the superconducting tapes with uniform thickness, width and winding tensions. Critical current of 60 m long superconducting tapes was measured 54.3 A continuously after final sintering heat treatment. The phase analysis of Bi-2223/Ag superconducting tapes are examined by the XRD.

  • PDF

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Fabrication of 250 m class Bi-2223/Ag HTS Tapes (250 m 급 Bi-2223/Ag 고온 초전도선재 제조)

  • Ha, H.S.;Oh, S.S.;Ha, D.W.;Jang, H.M.;Kim, S.C.;Song, K.J.;Park, C.;Kwon, Y.K.;Ryu, K.S.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.130-133
    • /
    • 2001
  • A multifilamentary Bi-2223 HTS tape for superconducting power applications was studied through the fabrication of 250-meter long tapes by the PIT(powder in tube) process. To fabricate continuous long wire, a drawing machine, a two-drum bull block and a rolled tape winding machine were developed. Especially, 250-meter long tapes were heat treated in the shape of pancake coil to reduce the heat affect zone and to achieve the high critical current. Engineering critical current density was improved through both the enhancements of critical current density by control of thermal process and the increase of filling factor by using thin Ag alloy sheath tubes less than 1.5 mm in thickness. We have made successfully 250-meter long 37 filamentary tapes with high filling factor up to 31 % employing the modified drawing and rolling technique. The critical current of 250-meter long tapes with pancake coil type was measured by transport method at self-field up to 250 gauss of center field. The measured values, based on the transport critical current at self-field, $I_{c}$ -B characteristics and magnetic field analysis, are 34 A of I$_{c}$ and 4.0 $kA/\textrm{cm}^2$ of $J_{e}$ at 250 m, 77 K, and 0 T. We also have achieved the 56 A of I$_{c}$ and 7.0 $0 kA/\textrm{cm}^2$ of$ J_{e}$ in short tapes at 77K, self-field, and 1$mutextrm{V}$/cm.

  • PDF