• Title/Summary/Keyword: HTS component

Search Result 39, Processing Time 0.042 seconds

A study on the SMES component modeling using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 SMES Component modeling에 관한 연구)

  • Kim, Jin-Gun;Kim, Jae-Ho;Jung, Hee-Yeol;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1998-1999
    • /
    • 2007
  • Before applying the HTS(High Temperature Superconductor) power devices to a real utility network, system analysis should be carried out by some simulation tools. PSCAD/EMTDC simulation tool is one of the most popularized useful analysis tools for electrical power system. Unfortunately the model component for HTS coil is not provided in PSCAD/EMTDC simulation tool. In this paper, EMTDC model component for HTS coil has been developed considering real characteristics of HTS coil like critical current, temperature and magnetic field. The developed model component of HTS coil could be used for power system application. Using the developed model component for HTS coil, we can easily do the simulation of HTS power devices application test in utility with the various inductance, quench current, inner magnetic field, and temperature values, for instances; SMES(Superconducting Magnetic Energy Storage) system, superconducting motor, transformer, and FCL(Fault Current Limiter)

  • PDF

Development of EMTDC model component for HTS power cable considering critical current, critical temperature and recovery time (임계전류, 임계온도 및 회복시간을 고려한 초전도 전력케이블의 EMTDC 모델 컴포넌트 개발)

  • Bang, Jong-Hyun;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Yoon, Jae-Young;Park, Min-Won;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Before applying HTS power cable to the real utility. system analysis should be carried out by some simulation tools . Hereby the electrical power system analysis is very important for practical use of HTS devices. Nowadays PSCAD/EMTDC simulation tool is one of the most popular and useful analysis tool for the electrical power system analysis. Unfortunately the model component for HTS power cable is not provided in the PSCAD/EMTDC simulation tool In this paper. the EMTDC model component for HTS power cable has been developed considering critical current, critical temperature and recovery time constant that depend on the sorts of HTS wire. The numerical model of HTS Power cable in PSCAD/EMTDC was designed by using the real experimented data obtained from the real HTS 1G wire test. The utility application analysis of HTS power cable was also performed using the developed model component and the parameters of the real utility network in this study. The author's got good results. The developed model component for HTS power cable could be variously used when the power system includes HTS power cable, especially it will be readily analyzed by PSCAD/EMTDC in order to obtain the data for the level of fault current power flow, and power losses, and so on.

RTDS-based Model Component Development of a Tri-axial HTS Power Cable and Transient Characteristic Analysis

  • Ha, Sun-Kyoung;Kim, Sung-Kyu;Kim, Jin-Geun;Park, Minwon;Yu, In-Keun;Lee, Sangjin;Kim, Jae-Ho;Sim, Kideok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2083-2088
    • /
    • 2015
  • The transient characteristics of the tri-axial High Temperature Superconducting (HTS) power cable are different from those of a conventional power cable depending on whether the cable is under a steady or transient state due to the quench. Verification using simulation tools is required to confirm both the characteristics of the cable and the effect of the cable when it is applied to a real utility. However, a component for the cable has not been provided in simulation tools; thus the RTDS-based model component of the tri-axial HTS power cable was developed, and a simulation was performed under the transient state. The considered properties of model component include resistance, reactance and temperature. Simulation results indicate the variation of HTS power cable condition. The results are used for the transient characteristic analysis and stability verification of the tri-axial HTS power cable. In the future, the RTDS-based model component of the cable will be used to implement the hardware-in-the-loop simulation with a protection device.

Development of EMTDC component for HTS coil considering $I_c$(B,T) characteristic (자장과 온도에 의한 임계전류특성을 가지는 초전도 코일 EMTDC 컴포넌트 개발)

  • Lee, Jae-Deuk;Jung, Hee-Yeol;Kim, Jae-Ho;Kim, Jin-Keun;Park, Min-Won;Yu, In-Keun;Lee, Eun-Yong;Beik, Seung-Kyu;Kim, Ho-Min;Kwon, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.949-950
    • /
    • 2007
  • Before applying HTS power device to the real utility system, a system analysis should be carried out by some simulator. PSCAD/EMTDC simulation tool is one of the most popular system analysis. Unfortunately the model component for HTS coil is not provided in the PSCAD/EMTDC simulation tool. In this paper, the model component for the HTS coil has been developed considering the real field data, temperature and magnetic field, of the HTS coil. The numerical model of HTS coil in PSCAD/EMTDC was designed by using the real experimented data obtained from the $AMSC^{TM}$ wire characteristic. The developed model component for HTS coil could be variously used when the power system includes HTS coil.

  • PDF

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

Fault current characteristic analysis of HTS power cable (고온 초전도 전력 케이블의 고장전류 특성 해석)

  • Kim, Jin-Geun;Lee, Jea-Deuk;Kim, Jea-Ho;Kim, A-Rong;Cho, Jeon-Wook;Sim, Ki-Deok;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.629-630
    • /
    • 2008
  • Before applying the HTS power cable to the real utility, the system needs to be analyzed using certain simulation tools. The impedance of superconductor is changed due to the magnitude of current, temperature, and magnetic field. PSCAD/EMTDC does not provide the superconductor component which has the impedance characteristic. The authors have developed the HTS power cable component in EMTDC program which included the same electrical characteristics as real HTS power cable previously. Based on the research results, the authors analyzed fault current characteristics of HTS power cable using the developed EMTDC model component.

  • PDF

Fault Current Analysis of HTS Power Cable (고장전류에 의한 초전도 전력케이블의 내부전류 변화 분석)

  • Bang, Jong-Hyun;Je, Hyang-Ho;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Yoon, Jae-Young;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.290-291
    • /
    • 2006
  • HTS(High Temperature Superconductivity) Power Cable has a different characteristic with conventional distribution line, so installation and operation condition are different. In this paper, internal fault current characteristic s of HTS power cable was analyzed. For this, EMTDC model component of HTS power cable was developed. The developed EMTDC model component is applied to distribution line, then authors analyze internal current characteristics of HTS Power cable when fault occurred.

  • PDF

A Electrical Characteristic Simulation and Test for the Steady and Transient State in the 22.9kV HTS Cable Distribution System. (22-9kV배전계통에 대한 초전도케이블의 정상 및 과도상태에 대한 전기적 특성 시험 및 시뮬레이션 결과 검토)

  • Lee, Geun-Joon;Hwnag, Si-Dol;Yang, Byeong-Mo;Lee, Hyun-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2316-2321
    • /
    • 2009
  • With rapid development of world economics, electricity demand in metropolitan area has been increased dramatically. HTS(High Temperature Superconducting) cable is one of most promising technology to solve the bottleneck of electric network. However, HTS cable is not considered as matured technology yet to power system planners because of its different characteristics with conventional metal conductors. This paper suggests the comparison results of HTS cable simulation and experiment on steady state operation, also give the simulation results on transient characteristics of HTS cable components. This results could devote not only to discuss the security of HTS cable operation, but also to design power system oriented HTS cable.

Modeling and Simulation of Superconducting Transformer using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 초전도 변압기의 모델링과 시뮬레이션)

  • 임채형;박민원;유인근
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This paper presents an effective simulation method for the high temperature superconducting (HTS) transformer using PSCAD/ EMTDC. Although researches and developments are performed for the HTS technologies, problems such as AC loss and quench phenomenon need to be solved for efficient design of HTS transformer. In addition, pre-study on the HTS transformer is a sort of time and cost consuming work, thus it is very worthy or being analyzing the characteristics of the HTS transformer in advance through a proper simulation method. It is very important to analyze the HTS devices by the simulation for seeking suitable and reasonable parameters for the practical application of those apparatuses in advance. A software- based component is suggested for- the simulation of the HTS transformer using PSCAD/ EMTDC and the numerical results are analyzed in detail in this paper.