• Title/Summary/Keyword: HSVA tanker

Search Result 6, Processing Time 0.017 seconds

Application of Algebraic Stress Model to the Calculation of the Viscous Flow around a Ship (대수응력 난류 모델의 선체주위 점성유동해석에의 적용)

  • Oh K. J.;Choi J. E.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • The flow around a ship is complex, especially, at the stern region of a full ship, where highly curved streamlines, hook-shaped iso-velocity contours, and strong secondary flow exist. To resolve this complex flow, an Algebraic Stress Model(ASM) is applied. The calculations are performed for the HSVA Tanker. The results are improved comparing with those of standard k-ε turbulence model, but still show a little difference from the experiments.

  • PDF

Numerical Calculation of Viscous Flows for Two HSVA Tankers (HSVA 두 탱커 선형에 대한 점성유동 계산)

  • Kwak, Young-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.138-146
    • /
    • 1999
  • The viscous flow around a ship hull is calculated by the use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stresses are midelled by using the k-${epsilon}$ turbulence model and the law is applied near the body. Body fitted corrdinates are introduced for the treatment of the complex boundary of the ship hull form and the governing equations in the physical domain transformed into ones in the computational domain. The transformed equations are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implicit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the sidcretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). To assure the proprietty of this computing method, HSVA tanker and Dyne hull are calculated ar both model and ship scale Reynolds number. Their reaults of pressure distributions on fore and aft body, axial velocity contours and transverse velocity velocity vectors and viscous resistance coefficients are compared with other's experiments and calculations.

  • PDF

Computation of Turbulent Flows around Full-form Ships

  • Van Suak-Ho;Kim Hyoung-Tae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.118-125
    • /
    • 1995
  • This paper presents the result of a computational study on the wake characteristics of two tanker models. i.e HSVA and DYNE hull forms. The focus of the study is on the distributions of axial. radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull forms. the incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are numerically solved by the use of a second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial. radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution for the both hull forms.

  • PDF

A Prediction Method for Three-Dimensional Boundary Layers on Ship Forms at Zero Froude Number

  • Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.2
    • /
    • pp.7-20
    • /
    • 1981
  • A method to predict the three-dimensional turbulent boundary layer on ship forms is introduced. The present differential method is in the scope of thin boundary layer theory and adopting the eddy-viscosity turbulence model. Two different numerical schemes are taken in this paper to handle the sign-changing cross-flows. The method is applied to predict the boundary layer development on real ship forms; SSPA Model 720($C_B$=0.675) and HSVA Tanker Model($C_B$=0.85). The results are qualitatively in good agreements with measurements except at the very stern. Therefore the method seems to be very promising if further developments are accomplished to handle the thick stern boundary layer effectively.

  • PDF

A Computational Study on Turbulent Flow Characteristics around Full-form Tankers

  • Van, Suak-Ho;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.1-13
    • /
    • 1996
  • This paper presents the result of a computational study on the wake characteristics of two tanker models, i.e. HSVA and Mystery hull forms. The focus of the study is on the distributions of axial, radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull farms, the incompressible Reynolds-Averaged Wavier-Stokes(RANS) equations are numerically solved by the second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial, radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution fur the both hull forms.

  • PDF

Some Applications of the TUMMAC Method to 3D Water-wave Problems (TUMMAC차분법(差分法)에 의한 3차원(次元) 비선형파(非線形波)의 해석(解析)에 관한 연구(硏究))

  • Young-Gill,Lee;Hideaki,Miyata;Hisashi,Kajitani
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.13-27
    • /
    • 1988
  • Two version of the TUMMAC(Tokyo University Modified Marker-And-Cell) method, i.e., $TUMMAC-IV_{vm1}$ and TUMMAC-VI are applied to two water-wave problems. The ship wave of a Series 60 model($C_B=0.6$) and of the fore-body of a HSVA tanker model are simulated by the $TUMMAC-IV_{vm1}$ method are the results are compared with the experimental results. From the comparison with the experimental data it is ascertained that the $TUMMAC-IV_{vm1}$ method is useful for the analysis of the realized by the TUMMAC-VI method is useful for the analysis of the characteristics of nonlinear ship waves. Three-dimensional wave breaking is realized by the TUMMAC-VI method in the simulation of a flow about a vertical rectangular cylinder. From the results of this simulation, it is shown that the TUMMAC-VI method is very available for the simulation of 3-dimensional wave breaking phenomena.

  • PDF