13

Technical Paper

ey
[

X B #EH B 2 @

F25% FA4E 1988® 128
Journal of the Society of
Naval Architects of Korea
Vol. 25, No. 4, December 1988

Some Applications of the TUMMAC Method to 3D Water-wave Problems
by

Young-Gill Lee*, Hideaki Miyata** and Hisashi Kajitani**

TUMMACZ 50| 2|5t 3RTT JEMLel MRAF0| TS Bz
FRTE*, HE FHE, R A/

Abstract

Two versions of the TUMMAC(Tokyo University Modified Marker-And-Cell) method, i.e.,
TUMMAC-1Vym and TUMMAC-VI are applied to two water-wave problems.

The ship wave of a Series 60 model (Cp=0.6) and of the fore-body of a HSVA tanker model
are simulated by the TUMMAC-1V,,, method and the results are compared with the experimental
results. From the comparison with the experimental data it is ascertained that the TUMMAC-
IV, method is useful for the analysis of the characteristics of nonlinear ship waves.

Three-dimensional wave breaking is realized by the TUMMAC-VI method in the simulation
of a flow about a vertical rectangular cylinder. From the results of this simulation, it is shown
that the TUMMAC-VI method is very available for the simulation of 3-dimensional wave break-

ing phenomena.
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1. Introduction

A finite difference method (FDM) is very powerful
method for the simulation of nonlinear hydrodynamic
phenomena, since it directly solves the Navier-Stokes
(NS) equations in a finite-difference form by time-
marching until a steady state is reached. Nowadays
attentions have been focused on the nonlinear wave
phenomena in ships and offshore structures, and
these problems can be more thoroughly solved by
the FDM.

A FDM for the problems of the ship and offshore
structure waves and its applications have been deve-
loped at the Experimental Towing Tank of the
University of Tokyo since 1979(1-10]. It is called
TUMMAC-method, because its basic algorithm is
same with the MAC-method(11).

TUMMAC-IV(9, 10] is the version for the simula-
tion of waves around an arbitrary three-dimensional
hull form. The hull surface is approximated by
simplifying the water-line into a successive segments
and the frame-line into step-like configuration, and
a free-slip condition is applied on the body boundary.
To raise the computational accuracy, the improved
version TUMMAC-IV,,; employs a variable mesh
system in vertical direction.
the TUMMAC-1V,,, is improved

so as to compute the waves of the full-length of a

In this paper,

ship model by modifying the velocity extrapolation
method in the body boundary cell of aft-body, by
giving the exact value of rclaxation factor w, in
the pressure computation of a body boundary cell
that contains a free surface and by modifying free
surface treatment that uses the Lagrangian movement
of marker particles. The usefulness of the improved
version of the TUMMAC-IV,, method is demons-
trated by the simulation of the waves generated by
Series 60 and HSVA models.
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It is difficult to explain the 3-dimensional wave
breaking phenomena by the previous TUMMAC-
method[9, 10], although the 2D wave breaking
simulation method is developed by Miyata(12].
Therefore, a new version TUMMA-VI(13] which
can deal with the 3D wave breaking phenomena in
two-layer flows is developed. In the previous works,
the Lagrangian movement of markers is used for
the computation of free surface configuration, but
the values of marker-density on the pressure point
of each cell are used in the TUMMAC-VI method.
The availability of this method is demonstrated by
the simulation of 3-dimensional breaking waves
about a vertical rectangular cylinder piercing the

air-water interface.
2. TUMMAC-IV,,, Method

2.1. Brief discription of the method

The details of the TUMMAC-1V,, method are
explained in reference(9), so the computational
procedure is described here very briefly.

The nonlinear ship-wave problem is solved by
computing the flow field around a ship. Therefore,
the continuity equation and NS equations are gover-
ning equations. However, since inviscid boundary
conditions are imposed on the free surface and body
surface, in reality the Euler equations are used.

The basic concept of the solution algorithm is
similar to the MAC-method of Welch et al.(11]) and
Hirt & Nichols(14). By solving the Poisson equation
derived from the continuity and NS equations as a
boundary-value problem, the velocity field is updated
from the new pressure field. Then, the marker
particles are moved in the Lagrangian manner with
the new velocities, and these new locations give the
new configuration of the free surface. The pressure
on the center of each cell is calculated by the

Poisson equation under the new velocities and the

Journal of SNAK, Vol. 25, No. 4, December 1988
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Fig. 1 Block diagram of the TMMAC-IV scheme

free-surface. The cycle is repeated until steady state
is attained, The computational procedure is shown
in Fig. 1.

A cartesian coordinate system is employed, in
which the z-axis is the centerline on the waterplane
of a ship. The y-axis is oriented transversely, and
the z-axis is oriented vertically, positive upward.
The ship advances in the negative z-direction. A

staggered semi-variable mesh system is used, and
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Fig. 2 Boundary-cells on horizontal plane

KREERBEEE H26% H 49 19885 12A

the dimensions of each rectangular cell are DX, DY
and DZ(k).

The NS equations are represented in a finite-diffe-
rence form by forward differencing in time and
centered differencing in space except for the convec-
tive terms. The differencing of the convective terms
are described by a hybrid scheme that is a combina-
tion of a second-order centered differencing and a
second-order upstream differencing (donor-cell me-
thod). For instance, the first term of the z-direc-

tional convective term is written as equation(1).

*'g'zii’*’g}%zﬁi”"k' :4%}2‘:{(%{—»1/2,;‘,k+u1 232,5,1)°
—(thi-1r0,j 6 thivrrn, 5,00 2
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* (l‘.‘u/z,,,k—una/z,j,k)

— | Bhimtr2, 5,k Biv1r2, 5,0l

(Bi1r2, 50— thi102,5,00) 1 (1)
Here, a is a combination factor. Namely, a=0 is
precisely the centered differencing, and a=1 is
precisely the donor-cell method. In this case, the
time stability requirement of Euler equations is
a> max (|z|-DT/DX, |¢!-DT/DY, |w|-DT/DZ)
from the Hirt’s stability analysis and the courant
number. Then #,% and % are the convective velocity
components.

All the cells are classified into fluid cells (F-cells),
body boundary cells (B-cells) and empty cells (E-
cells) as shown in Fig. 2, The hull surface is made
of waterlines and framelines. The former is appro-
ximated by a succession of straight segments, and
the vertical variation within each cell is ignored
for the latter(9). A free-slip body boundary condition
is fulfilled in the body boundary cells. Then each
B-cell is classified into the nine horizontal cases as
With the vertical cases(9], the

total number of cases is thirty-five.

shown in Fig. 2.

A free-slip condition must fulfil (1) that the
(2) that

the tangential velocity does not have normal gradi-

velocity normal to a body surface is zero,

ent, and (3) that the divergence of a B-cell is zero.
Under these conditions, the pressure of a cell must
be satisfied with the pressure condition as equation

2.
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Here, 17', and # are the fluid velocity vector at the
center of a segment and a unit outward normal
vector of a segment respectively, m is the number
of time step, and o is a relaxation factor.

On the free surface, the Lagrangian movement
of marker particles is used for the fulfilment of
kinematic condition, and the “irregular star” techni-
que of Chan & Street[15) is used for the dynamic
In this study,

instead of one marker in each cell, after the move-

condition. four markers are used
ment of markers the wave height of the center of
a cell is determined by the interpolation of the
closest three marker points. The reason for using
this method, in the case of low speed ship, is that
the sign of velocity is very rapidly changed on the
free surface after the acceleration of the flow,

In the present method, the conditions of center-
plane, inflow, bottom, side and outflow boundaries
are same with those in Miyata, et al.(9).

2.2. Improved implementation of body boun-
dary condition

In the present study, the first improvement is that
the relaxation factor o is exactly reduced by the
3-dimensional treatment of a boundary cell contain-

ing the free surface, shown in Fig. 3. The reduced

Fenr

Free surface

POSOUGE W U ————

Body boundary

Fig. 3. Definition sketch for the treatment of a
boundary cell containing a free surface
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ws is derived as equation(3).
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The second improvement is the extrapolation me-
thod of velocity w in a B-cell of the aft-body. In
the case of ICASE=2,3 and 6 (with KCASE=1,2
[9)) as shown in Fig. 2, the velocity w of a B-cell

is extrapolated from the vertical velocities of one

Table 1 Condition of computation for Series 60

Full-
Condition of hull For%- d length
0dY| of hull
Do(ma)in of Length | 1.152 | 5.015
m
computation Breadth | 0.496 | 0.600
Depth | 0.369 | 0.314
Cell size (m) DX 12.0 17.0
DY 8.0 15.0
DZ 7.41~ | 6,65~
39.15  40.90
\
Approximate number
pproximae | | 137000 236000
Time increment DT (s) 0.00329) 0.00572
0. 00230
0. 00197
Time steps for 400 300
acceleration 200
200
Total time steps 600 500
400
400
Combination factor « [ 0.5 0.5
Relaxation factor @ { 1.5 | 1.5
Kinematic viscosity v (m?/s) 1 0.0 ‘ 0.0
Froude number Fxn 0.18 0.18
0.25
0.30
Speed of advance(m/s) 0.891, 0.891
1.238
1.485
Length of ship model (m) ' 0.90 1 2.50

Journal of SNAK, Vol. 25, No. 4, December 1988
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outer and one after F-cells, shown in equation(4).
wi =i, ;e SSTHwi iy e (1—S8T) 4)
where,
SST=sin?{Tan ' (DY/DX)}

3. Computed Results by TUMMAC-IV,,.,

3.1. Condition of comgputation

The computations of waves generated by the fore-
body and full-length of the Series 60 (Cp=0.6),
4210W ship model of 2. 5m length case are performed.
The conditions of computation are shown in Table
1. Figurce 4 shows the cell division of the Series 60
hull on a (y,z)-vertical planc at I=138. The ver-
tical spacing DZ(k)
surface of the rest condition, and it varies from 6. 65

to 40.9mm beneath it.

is constant above the free

The computations are performed at the speeds of
Fn=0.18, 0.25 and 0.30 for the fore-body, at the
Fn=0.18 for the full-length. The total number of
cell is about 236,000 for the full-length case using
the computer memory of 19.2MB. The CPU time

17

is about 1.8 hours using HITAC M-680H of the
University of Tokyo for the 500 time steps (full-
length, Frn=0.18).

Morcover, the computations of waves generated
by the fore-body of the HSVA model of 7.6m long
are performed. The purpose of this computations is
to simulate the nonlinear bow wave phenomena about
a hull form with blunt bow. The chosen Froude
numbers are 0.15 and 0.17.

3.2. Computed results and comparison

The simulation of the waves by the fore-part of
the Series 60 model at three Froude numbers is
executed in one computational job. Consequently,
three wave-contour maps at steady states at Fa=
0.18 (600-th step), 0.25 (1000-th step) and 0.30
(1400-th step) are as shown in Fig. 5. The angles
of wave-crest-line of the bow waves are decreased
by the increasing Froude number. It shows fine
agreement with the one of the distinctive characte-
ristics of the nonlinear bow waves. Figure 6 shows
the wave profiles along the hull surface. The agree-

ment with experimental results is improved with the
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Fig. 4 Cell division of a Series 60 ship model on a (y,2) -vertical plane
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increase of Froude number.

Figure 7 shows the wave-contours around the full-
length of the Series 60 model at Fa=0.18 (500-th
step). These are good results except that it shows
dimpled wave-contour in the region near the midship.
The dimpled contour may be due to the very rapid
change of the sign of velocity on the free surface.
The computed wave profile on the body surface of
full-length is compared with measurements in Fig.
8. The agreement with the measurements is good,
especially on the surface of the aft-body rather than
the fore-body. It seems that the cell size is not
sufficiently fine on the fore-body surface, despite that
the water line of the Series 60 model has very sharp
end as well as delicate curve on the fore-body.

The perspective views of computed wave configura-
tion around the fore part of the HSVA model at
Fn=0.15, 0.17 (600-th step) are shown in Fig. 9.
In the speed range from Fa=0.15 to 0.17 the wave
resistance of the HSVA model increases very rapidly.
This phenomenon of the abrupt increase of wave
resistance is attributed to the conspicuous wave
formation near the shoulder at Fn=0.17 which shows

a remarkable difference from Fn=0.15 as observed
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Fig. 8 Comparison of wave profiles of the full length of a Series 60 ship model at Fn=0.18

Fig. 9 Perspective views of waves around the fore-
body of a HSVA model at Fr=0.15, 0.17,
600th time step

in Fig. 9. This is also noted in Fig. 10 for the

wave-contour, in which the wave formations near the

bow do not show substantial difference between two

Froude numbers. The computed wave profile along

the hull surface is compared with measurements in

Fig. 11 together with the computed wave profile by

the original Rankine source method by Gadd(1979).

It must be noted that this method and the TUMMAC

-IV method employ nonlinear free-surface conditions

and no others. The superior accuracy of the present

method is obviously shown, especially near the

shoulder.

4. TUMMAC-VI Method

4.1. Brief description of the method
The incompressible two-layer flow is considered.
Then the continuity equation and NS equations are
Therefore,

the density of the fluid is assumed to be constant

employed as governing equations{13).

within each fluid region.

The basic concept of the algorithm is same with
the former TUMMAC-method. Namely, the Cartesian
coordinate system in the staggered semi-variable mesh
system is used, and the NS equations are represented
in a finite-difference form by forward differencing
in time and centered differencing in space except for
the convective terms. The differencing of the convec-
tive terms are described by the donor-cell method.

The computational procedure is shown in Fig. 12.
The marker-density distribution is calculated from
the

For the calculation of the marker-density, Adams-

kinematic free-surface condition of interfacc.
Bashforth method is employed in time-differencing,
and second-order centered differencing for the space-

differencing as shown in equation(5,6).

=it (3ve— Ly pr )
where,
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Some Application of the TUMMAC Method to 3D Water-wave Problems 21

The Poisson equation for the respective layers are
independently solved. The pressure field of the layer
-2 is determined after that of the layer-1 is deter-
mined.

The no-slip body boundary condition is approxima-
tely implemented on the body surface, The velocities
on the body surfaces are set at zero, and other
velocities of a boundary cell are extrapolated into
the body so that the velocities are zero on the body

surface and the continuity condition of the B-cells

is satisfied.” Since a rectangular cylinder is chosen as
an obstacle in this study, two extrapolated values of
velocity are given on one velocity point inside the
corner and one of the two in the related direction
is used for the computation of the convective and
diffusive terms. Pressure is also extrapolated from
fluid to body making use of the relation of the
momentum equation,

Velocities for an uniform stream or oscillatory
flow are given on the inflow boundary. The pressure
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Fig. 11 Comparison of wave profiles on the hull surface of the forebody of a HSVA model

at Fa= 0.15, 0.17

at two points in the top and bottom cell of the
inflow boundary is kept at the static pressure as
standard values, and the pressure in other cells at
I=1 is extrapolated from I=2 through the relation
of the momentum equation. On the top and bottom
boundaries the velocities are extrapolated so as to
have no-normal-gradient of velocity on the bounda-
On the
is imposed, and the no-normal-gradient

ries. side open boundaries the periodic
condition
condition is imposed for the outflow boundary. The
marker-density is extrapolated with the same value
from the fluid cells to the boundary cells.
4.2. Free-surface condition

In the previous studies, the Lagrangian movement
of markers or segments are used for the implementa-
tion of the kinematic free-surface condition. However,
these method seems to have serious difficulties when
it is applied to the wave breaking with the overturn-
ing motion in three-dimensions. Therefore, a simple
technique that uses marker-density is devised in this
work.

It is assumed that the scalar variable of marker-

[INITIAL CONDITION |

MARKER"DENSITY DISTRIBUTIONI
T
VELOCITY FIELD
FROM MOMENTUM EQ.

INTERFACE LOCATION
DETERMINATION
BY MARKER-DENSITY

|

BOUNDARY CONDITION
FOR VELOCITIES

S U
SOURCE TERM FOR PUISSON EQ.
CONVECTION, DIFFUSION ETC.

TIME MARCHING

BOUNDARY CONDITION
FOR PRESSURE

TPOISSON £Q. SOLUTION
FOR PRESSUER IN LAYER-I

POISSON EQ. SOLUTION
FOR PRESSURE IN LAYER-2

ITERATION

Fig. 12 Block diagram of the TUMMAC-VI scheme
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density, that determines the free-surface location, is
ruled by the equation of the kinematic free-surface

condition as follows.

0pm 0pm . 00m - 00m _
T 5 w0 )
Then, the location of the interface between two
s intertace

f

Fig. 13 The irregular star near the interface

fluid body o
interface /«%‘Q { k- 1 i |
\ 1 2 !
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e

Fig. 14 Treatment of the interface locationat the
intersection with an obstacle

® prussure points

Gt the intertuae

O the pressare

of the layer-1

Fig. 15 Definition sketch for pressure extrapolation
at the interface

Fig. 16 Velocity extrapolation at the intercefa
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layers is determined by the following definition of

the free-surface.

en= (o2 /2 on the interface (8)

Here, the superscripts 1,2 imply the layer-1 and
layer-2, respectively.

Since the value of the marker-density is diffused
across the interface in the course of the computation
of the equation(7), this method obscures the interface
location and the accuracy is inferior to the previous
methods unless very fine grid spacing is used. It
must be noted that the marker-density is used ouly
for the determination of the interface location, and
for the momentum and related equations two physical
values of density are used.

The dynamic free-surface condition is satisfied by
the so-called “irregular star” technique in the solution
process for the Poisson equation. As shown in Fig.
13, the leg-length of the each irregular stars is
calculated from the marker densities. At the intersec-
tion of the interface with the obstacle the slope of
the interface is always assumed to be horizontal as
shown in Fig. 14. This is to avoid singular behavior
on this intersection.

The pressure on the interface is determined by

extrapolating the pressure of the layer-1 to the inter-

Table 2 Condition of computation for a rectangular
cylinder

Domain of computation (m) 0.60x0.46x0.64

(length X width x depth)

Cell size (mm) DX 10.0
DY 10.0
DZ 3.0~18.4

Approximate number of used cell 307800

Time increment DT (s) 0. 0005

Time steps for acceleration 1000

Total time steps 1600

Relaxation factor o 0.6

Density p (kgesec?/m?*) air/water 0.1229/101.79

Kinematic viscosity v (m?/sec) 1.502x10-5/
air/water 1.009x10-¢

Inflow condition air/water 0/uniflow

Uniflow velocity (m/s) 1.00

Fn 1.01
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Fig. 17 Cell division of a rectangular cylinder,
(a) (x, z)-vertical and
(b) (x, »)-horizontal planes

face location as shown in Fig. 15. Precisely, the
pressure on the interface is extrapolated as epuation
(9.

Py, Py, P, PAZP,‘,;,};

P5:Pi,;',k*plg775

Py=P; ;v tp'gne )]

The velocities near the interface are constantly

extrapolated from the layer-2 to the layer-1 so that
the velocity gradient in the normal direction appro-
ximately diminishes at the interface and consequently
no unfavorable instability occur here. As shown in
Fig. 16,
the interface slope is greater than 45° or vertically

they are horizontally extrapolated when

otherwise.

Young-Gill Lee, Hideaki Miyata and Hisashi Kajitani

NSTie Ty

AJLOLGEN

i
b
)

Fig. 18 Wave contour map of a rectangular cylinder
at U=1.0m/s, 1,600 step(0.80sec)

5. Computed Results with TUMMAC-VI

5.1. Condition of computation

The grid system in the computational domain is
shown in Fig. 17, and the conditions of computation
are shown in Table 2.

The vertical rectangular cylinder piercing the
interface of air and water has the horizontal cross-
section of 0.1mX(.Im. The horizontal grid spacing
DX and DY are uniformly 10mm all over the
computational domain, and the vertical grid spacing
DZ(k) varies from 3mm to 18.4mm, namely the
variable spacing is employed. The dimensions of the
computational domain is 0.60m x 0. 46m X 0. 64m, and
the total number of cell is 307, 800.

The computation is started from the rest condition,
and the fluid all over the computational domain is
accelerated for 1,000 time steps. After the acceleration
is finished, the computation is continued to the 1,600
-th time step, the velocities at the inflow boundary
being kept constant.

The Froude number based on the side length of
the cylinder is 1.01.

5.2. Computed results

The wave contour map at 1, 600-th time step (0.8

sec) is shown in Fig. 18. Since one contour curve

is drawn in one horizontal layer of cells, this figure
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Fig. 19. Wave profile and velocity vector field of a rectangular cylinder on the vertical plane of J=18

at U=1.0m/s, 1,600 step (0.80sec)

gives only qualitative informations. However, it is
clearly observed that a detached bow wave with
circular plan-form is formed, and that another steep
slope of the water surface appears from the forward
corners of the cylinder. The complex wave breaking
phenomena is also observed behind the cylinder. It
will be safe to say that the wave formations in these
simulated results show good resemblance to the
physical phenomenon of strongly interacting interface.

The velocity vector field as well as the profile of
the interface are shown on the vertical plane at J=
18, as shown in Fig. 19. The vertical plane at J=
18 is just on the side surface of the cylinder. The
interpolated velocities at the pressure point of the
cells are used for this figure, and the spacing between

the starting points of the vectors is double of the

FE TR EIEE S05% H 4% 19884F 12A

grid spacing. The steep slope of the wave just behind
the forward corners shows good agreement with the
physical wave motions. The flow is separated at the
sharp corners, and deeply suppressed region appears
behind the cylinder, because very complicated flow-
field of this region is involving vortical motion,
free-surface turbulence, wave breaking and air-entra-
inment,

The contours of vertical velocity component w are
shown on the vertical plane at J=22 in Fig. 20.
The vertical plane at J=22 is almost on the center-
plane of the cylinder. The intimate contours are
concentrated near the strongly interacting interface,
especially where wave breaking or air-entrainment
takes place.

In Fig. 21, the velocity vector field and the inter-
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Fig. 20 Contour map of velocity component w of a
rectangular cylinder on the vertical plane of
J=22 at U=1.0m/s, 1,600 step (0.80sec)

face profile on a vertical plane (I=29) normal to
the direction of the upstream flow are shown. The
longitudinal location I=29 means the plane just
before the cylinder. The front line of the detached
bow wave is shown in this figure, and the vortex
phenomenon appears in the air region above this

front line.
6. Concluding Remarks

The simulations of the wave system about the
full-length of a ship model are performed by the
TUMMAC-IV,n; version with the improvement of
the velocity extrapolation method in the B-cells of
aft-body, the 3-dimensional exactness of relaxation
factor wy and the improvement of free-surface treat-
ment with the marker particles. In the comparison
of computed and measured wave profiles along the
hull surface, the agreement is satisfactory especially
on the hull surface of the aft-body of the Series 60
hull. It may be considered that the influence of
nonlinear free-surface effect is greater than the
viscous effect in the wave pattern of the aft-body,

because the Series 60 model is very thin. From the
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Fig. 21 Wave profile and velocity vector field of a
rectangular cylinder on the vertical plane of
I=29 at U=1.0m/s, 1,600 step (0.80sec)

above results and the computational results of the
TUMMAC-

IV,m1 method is ascertained to be effective for the

bow waves around the HSVA model,

simulation of nonlinear ship waves.

The wave breaking in a 3-dimensional space,
which has been considered one of the most difficult
problems for the numerical simulation of free-surface
problem, is demonstrated to be resolved by the
TUMMAC-VI method. Since the fluid motions of
two layers are simultaneously simulated, it is consi-
dered that this method can be applied to a variety
of two-layer problems. However, it is noted that the
present method must be improved for the arbitrary
body

numerous approximations on the interface, computa-

shape, etc.. Furthermore, because of the

tional accuracy is not sufficient in spite of the large
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number of the grid points. The CPU time is more
than fifteen hours for 1,600 time steps by the com-
puter of the University of Tokyo HITAC MG689/
682H. These must be improved in fulure.

This rescarch is partly supported by the Grant-in-
Aid for Scientific Research of the Ministry of Educa-
tion, Science and Culture, also partly by the LINEC
group of shipbuilders in Japan.
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