• 제목/요약/키워드: HSI Color model

검색결과 82건 처리시간 0.024초

컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식 (Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms)

  • 이종희;김진환
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.471-476
    • /
    • 2010
  • 본 논문에서는 RGB 컬러 정보와 오류 역전파 신경망 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 먼저, 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정하고 픽셀값의 차를 이용하여 Red 후보 영역과 Green 후보 영역으로 구분한 후 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 둘째, 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 마지막으로, 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI(Hue Saturation Intensity) 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.

칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘 (Face Region Detection Algorithm using Euclidean Distance of Color-Image)

  • 정행섭;이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-86
    • /
    • 2009
  • 본 논문은 피부색 요소의 유클리디안거리를 계산 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역에서 CMY칼라 모델 C공간에서 눈을 검출 하였고, YIQ 칼라 모델 Q공간에서 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 40개의 정면 칼라 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.

  • PDF

HIS 칼라모델에서 색상 변환을 이용한 자동차 추적 알고리즘 (Vehicle tracking algorithm using the hue transform in HIS color model)

  • 이주신
    • 한국항행학회논문지
    • /
    • 제15권1호
    • /
    • pp.130-139
    • /
    • 2011
  • 본 논문에서는 HIS 칼라모델에서 색상변환을 이용한 자동차 추적 알고리즘을 제안 하였다. 제안된 알고리즘은 도로위에 두 개의 수평가상 데이터 샘플라인을 설치해 놓는다. 차영상은 프레임과 프레임 사이에서 검출하였다. 검출된 자동차의 차영상에서 색상 분포를 이용해서 자동차 동일성 판별과 차선 변경을 검출하였다. 제안된 알고리즘의 효능성을 검토하기 위하여 도로에 주행하는 자동차를 대상으로 두 가상 샘플라인을 통과하는 자동차의 동일성 판별과 차선 변경을 검출하고, 자동차의 속도 측정기와 제안된 방법을 비교한 결과 0.4% 이내임을 보였다.

생체인식을 위한 귀 영역 검출 (Human Ear Detection for Biometries)

  • 김영백;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.813-816
    • /
    • 2005
  • 귀 영역 검출은 무구속 귀 인식 시스템에서 중요한 요소 중에 하나이다. 본 논문에서는 얼굴 측면 영상에서의 귀 영역 검출방법을 제안한다. 제안하는 방법은 모양정보와 색상정보를 활용하는 인간의 인식과정을 모방하여 만들었다. 먼저 획득된 영상에서 피부색을 이용하여 얼굴영역을 검출하고, 검출된 얼굴영역에서 에지정보를 이용하여 귀후보 영역을 검출한다. 그리고 실제 귀영역인지를 검증하기 위해서는 통계적 학습 이론에 근거한 SVM(Support Vector Machine)을 이용한다 제안된 방법은 조명이 안정적인 실내 환경에서 높은 검출율을 보였다.

상황인지 센서를 활용한 지능형 화재감지 알고리즘 설계 및 구현 (Development of Fire Detection Algorithm using Intelligent context-aware sensor)

  • 김형준;신규영;오영준;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.93-96
    • /
    • 2015
  • 본 논문에서는 상황 인식 센서를 활용한 산불 감지 시스템을 제안한다. 기존 기상 및 비전 센서 기반의 산불 방재 시스템의 경우 카메라 센서로 획득한 영상을 조명변화에 강인한 색상공간인 HSI(Hue, Saturation, Intensity) 모형으로 변환시켜 처리하여 산불영역에 대한 특징을 추출하고 있다. 그러나 이 경우 단일 카메라 센서가 넓은 범위에 화재를 감지하기 때문에 넓은 범위의 화재가 발생하기 전까지는 화재발생을 감지하는데 어려움이 있다. 또한 복합적인 상황에서의 화재 감지가 힘들뿐만 아니라 별도의 지속적인 경계가 필요한 지역에 대한 설정이 어렵다. 따라서 본 논문에서는 센서를 활용하여 실시간으로 온도, 습도, Co2, 불꽃유무정보를 습득하고 이 데이터들을 복합적인 상황에 따라 비교, 분석하고 그에 따른 가중치를 부여하여 화재를 판단하는 알고리즘을 제안한다. 또한 화재 상태를 나누어 집중적인 화재 감지가 필요한 구역에 차별적인 관리가 가능하게 한다.

  • PDF

신체 움직임-시·청각 정보 상호변환 시스템의 구현 (Implementation of Mutual Conversion System between Body Movement and Visual·Auditory Information)

  • 배명진;김성일
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.362-368
    • /
    • 2018
  • 본 논문은 학습으로 공감각 현상을 지각할 수 있는 의도적인 공감각을 기반으로 신체의 움직임에서 시각과 청각정보로의 변환 및 역변환 시스템을 구현하였다. 신체의 움직임은 웨어러블 암밴드인 Myo의 출력인 오일러 각을 사용하였고, 근감각 정보로서 롤(Roll), 피치(Pitch), 요(Yaw) 신호를 사용하였다. 또한, 시각과 청각 정보로서 미디(MIDI, Musical Instrument Digital Interface)신호와 HSI 컬러 모델을 사용하였다. 근감각 신호와 시 청각 신호 사이의 상호변환 방법은 일대일 대응 관계를 적용함으로써 직관적으로 쉽게 유추할 수 있도록 하였다. 시뮬레이션 결과에서 신체의 움직임 정보와 시 청각 정보의 상호변환이 가능함을 ROS(Root Operation System)와 3D 시뮬레이션 툴인 Gazebo를 사용하여 입력과 출력을 비교하였고 변환 오차가 작음을 확인하였다.

손 제스처 기반의 애완용 로봇 제어 (Hand gesture based a pet robot control)

  • 박세현;김태의;권경수
    • 한국산업정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.145-154
    • /
    • 2008
  • 본 논문에서는 애완용 로봇에 장착된 카메라로부터 획득된 연속 영상에서 사용자의 손 제스처를 인식하여 로봇을 제어하는 시스템을 제안한다. 제안된 시스템은 손 검출, 특징 추출, 제스처 인식 로봇 제어의 4단계로 구성된다. 먼저 카메라로부터 입력된 영상에서 HSI 색상공간에 정의된 피부색 모델과 연결성분 분석을 이용하여 손 영역을 검출한다. 다음은 연속 영상에서 손 영역의 모양과 움직임에 따른 특징을 추출한다. 이때 의미 있는 제스처의 구분을 위해 손의 모양을 고려한다. 그 후에 손의 움직임에 의해 양자화된 심볼들을 입력으로 하는 은닉 마르코프 모델을 이용하여 손 제스처는 인식된다. 마지막으로 인식된 제스처에 대응하는 명령에 따라 애완용 로봇이 동작하게 된다. 애완용 로봇을 제어하기 위한 명령으로 앉아, 일어서, 엎드려, 악수 등의 제스처를 정의하였다. 실험결과로 제안한 시스템을 이용하여 사용자가 제스처로 애완용 로봇을 제어 할 수 있음을 보였다.

  • PDF

CAMShift와 이중 원형 추적법을 이용한 손 동작 게임 컨트롤러 구현 (Implementation of Finger-Gesture Game Controller using CAMShift and Double Circle Tracing Method)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제15권2호
    • /
    • pp.42-47
    • /
    • 2014
  • 본 논문에서는 단일 카메라를 사용하여 사용자 검지 손가락 움직임과 손가락 개수의 인식을 기반으로 하는 손동작 게임 컨트롤러 인터페이스를 구현한다. 구현한 손동작 게임 컨트롤러 인터페이스는 검지 손가락 끝점의 위치 추적을 위해서 CAMShift(Continuously Adaptive Mean Shift) 알고리즘을 적용하고, 손가락 개수 인식을 위해서는 손 영역의 중심으로부터 이중 원형 추적(Double Circle Tracing)에 의한 교차정보를 이용한다. 이때 성능 향상을 위해서 RGB 입력 영상에 대해서 CAMShift 알고리즘 적용에는 HSI 컬러모델을 이중 원형 추적을 위해서는 YCbCr 컬러모델을 사용한다. 또한 인텔사의 OpenCV 라이브러리를 기반으로 C++언어를 사용하여 사격 시뮬레이터 게임을 제작하여 손동작 게임 컨트롤러 인터페이스의 성능을 평가하고 사용자 명령 컨트롤러로서의 유효성을 검증하였다. 그 결과 각 게임 컨트롤 모드별 평균 90% 이상의 인식률을 보였다.

다각 근사화된 그리퍼 영상을 이용한 로봇의 위치 정렬 (Pose alignment control of robot using polygonal approximated gripper images)

  • 박광호;김남성;기석호;기창두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.559-563
    • /
    • 2000
  • In this paper we describe a method for aligning a robot gripper using image information. The region of gripper is represented from HSI color model that has major advantage of brightness independence. In order to extract the feature points for vision based position control, we find the corners of gripper shape using polygonal approximation method which determines the segment size and curvature of each points. We apply the vision based scheme to the task of alignment of gripper to reach the desired position by 2 RGB cameras. Experiments are carried out to exhibit the effectiveness of vision based control using feature points from polygonal approximation of gripper.

  • PDF

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.