• Title/Summary/Keyword: HPLC quantification

Search Result 403, Processing Time 0.023 seconds

Development of an Analytical Method for Fluxapyroxad Determination in Agricultural Commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 Fluxapyroxad 잔류분석법 개발)

  • Kwon, Ji-Eun;Kim, HeeJung;Do, Jung-Ah;Park, Hyejin;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Fluxapyroxad is classified as carboxamide fungicide that inhibits succinate dehydrogenase in complex II of mitochondrial respiratory chain, which results in inhibition of mycelial growth within the fungus target species. This study was carried out to assure the safety of fluxapyroxad residues in agricultural products by developing an official analytical method. A new, reliable analytical method was developed and validated using High Performance liquid Chromatograph-UV/visible detector (HPLC-UVD) for the determination of fluxapyroxad residues. The fluxapyroxad residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient($R^2$) of fluxapyroxad standard solution was 0.9999. The method was validated using apple, pear, peanut, pepper, hulled rice, potato, and soybean spiked with fluxapyroxad at 0.05 and 0.5 mg/kg. Average recoveries were 80.6~114.0% with relative standard deviation less than 10%, and limit of detection (LOD) and limit of quantification (LOQ) were 0.01 and 0.05 mg/kg, respectively. All validation parameters were followed with Codex guideline (CAC/GL 40). LC-MS (Liquid Chromatograph-Mass Spectrometer) was also applied to confirm the analytical method. Base on these results, this method was found to be appropriate fluxapyroxad residue determination and can be used as the official method of analysis.

Formaldehyde Monitoring of Hygiene Products in Domestic Market (국내 유통 위생용품 중 포름알데히드 잔류량 모니터링)

  • Na, Young-Ran;Kwon, Hyeon-Jeong;Cho, Hyun-Nho;Kim, Hyeon-Jin;Park, Yon-Koung;Park, Sung-Ah;Lee, Seong-Ju;Kang, Jung-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.225-233
    • /
    • 2020
  • By the standards and specifications for hygiene products, three test methods for formaldehyde are specified for each item type of hygiene product. After derivatization using acetylacetone and 2,4-dinitrophenylhydrazine (2,4-DNPH), formaldehyde is analyzed by spectrophotometer and high-performance liquid chromatography (HPLC). Validation of the three test methods was performed on tissue, diaper lining and waterproof layer, and panty liner products. The results of linearity (R2), limit of detection (LOD), limit of quantification (LOQ), recovery rate (%) and reproducibility (%), showed that all three methods are suitable for analyzing formaldehyde in hygiene products. After derivatization with 2,4-DNPH and cetylacetone, formaldehyde was analyzed at 0, 3, 6, 9, 24 and 48 hours by HPLC. Formaldehyde derivatized with 2,4-DNPH showed no statistically significant change in formaldehyde peak area over time (P>0.05). But, acetylacetone-derivatizated formaldehyde showed a negative correlation coefficient (r) over time (P<0.01). We investigated the residual amounts of formaldehyde in 205 hygiene products distributed in Busan. Among 74 disposable diaper products tested, 73 had low concentrations of formaldehyde (0.13-29.87 mg/kg). Moreover, formaldehyde was not detected in any of 78 tissue, 27 disposable paper towel, 12 disposable dishcloth, 7 paper cup, one brand of paper straw and 6 disposable napkin products.

Simultaneous Determination of Eight Sugar Alcohols in Foodstuffs by High Performance Liquid Chromatography (HPLC를 이용한 식품 중 당알코올 8종 동시분석)

  • Lim, Ho-Soo;Park, Sung-Kwan;Kwak, In-Shin;Kim, Hyung-Il;Sung, Jun-Hyun;Choi, Jung-Yoon;Kim, So-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • A method was established for the simultaneous determination of sugar alcohols, erythritol, xylitol, sorbitol, inositol, mannitol, maltitiol, lactitol and isomalt by High Performance Liquid Chromatography (HPLC). The sugar alcohols were converted into strong ultraviolet (UV)-absorbing derivatives with p-nitrobenzoyl chloride (PNBC). HPLC was performed on Imtakt Unison US-$C_18$ column, using acetonitrile: water (77:23) as a mobile phase and UV detection (260 nm). The calibration curves for all sugar alcohols tested were linear in the 10~200 mg/L range. The average recoveries of the sugar alcohols from three confectioneries spiked at 100 ppm of eight sugar alcohol standards ranged from 81.2 to 123.1% with relative standard deviations ranging fromo 0.2 to 4.9%. The limits of detection (LODs) were $0.5{\sim}8\;{\mu}g/L$ and the limits of quantification (LOQs) were $2{\sim}17\;{\mu}g/L$. Reproducibility of 8 sugar alcohols was 0.28~1.97 %RSD. The results of the analysis of confectioneries showed that 89 samples of 130 were detected and the sugar alcohols content of samples investigated varied between 0.4 and 693.7 g/kg. A method for the simultaneous determination of eight sugar alcohols will be used as basic data for control of sugar alcohols in confectioneries, and quality control in food manufacturing.

Simultaneous Analysis for Veterinary Drug Residues in Honey by HPLC/MS/MS (HPLC-MS/MS를 이용한 벌꿀 중 동물용의약품 동시분석방법 연구)

  • Kim, Jong-Hwa;Moon, Sun-Ea;Kim, Ki-Yu;Jung, You-Jung;Lee, Chang-Hee;Ku, Eun-Jung;Yoon, Mi-Hye;Lee, Jong-Bok
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.94-98
    • /
    • 2016
  • This study was conducted to establish the simultaneous analysis method for veterinary drug residues in honey by high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The eleven targeting veterinary drugs with honey test method in Korean Food Standards Codex were divided into Group 1 (streptomycine dihydrostreptomycine, neomycine) and Group 2 (oxytetracycline, enrofloxacin, ciprofloxacin, cymiazole, chloramphenicol, amitraz, coumaphos, fluvalinate) to be analyzed simultaneously. From the results, the retention time (RT) of the targeting drugs was within 15 min, the range of detection limits was 0.0056 to $0.0643{\mu}g/g$ and the range of quantification limits was 0.0169 to $0.1948{\mu}g/g$. The coefficients of determination ($R^2$) for Group 1 ($0.05{\sim}1.0{\mu}g/mL$) and Group 2 ($0.01{\sim}1.0{\mu}g/mL$) were 0.9917~0.9987 and 0.9923~1.000 respectively, and showed the good linearity. The recovery rates for Group 1 (final conc. $0.25{\mu}g/g$) and Group 2 (final conc. $1.0{\mu}g/g$) were 65.1~80.6% and 64.2~90.3% respectively. Also, the analysis results of inter day (n = 3) and intra day (n = 6) RSD (%) for area and retention time showed that the RSD (%) for area and retention time was below 10.92% and 1.57%. Therefore, the simultaneous analysis method of this study is evaluated to be a good test method for veterinary drug residues in honey.

Development of an Analytical Method for the Determination of Pyriofenone residue in Agricultural Products using HPLC-UVD (HPLC-UVD를 이용한 농산물 중 살균제 pyriofenone 분석법 확립)

  • Park, Hyejin;Kim, HeeJung;Do, Jung-Ah;Kwon, Ji-Eun;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Pyriofenone is an aryl phenyl ketone fungicide that is newly registered in Korea in 2013 to control powdery mildew on food. The objective of this study was to develop reliable and sensitive analytical method for determination of pyriofenone residue in agricultural products for ensuring the food safety. The pyriofenone residues in all samples(Korean melon, pepper, potato, mandarin, soybean, and hulled rice) were extracted with acetonitrile, partitioned with dichloromethane, and then purified with a silica cartridge. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. The linear range of pyriofenone was 0.05~5 mg/kg with the correlation coefficient ($r^2$) > 0.999. Average recoveries of pyriofenone ranged from 72.8% to 99.5% at the spiked level of 0.05 and 0.5 mg/kg, while the relative standard deviation was 2.3%~6.4%. In addition, the limit of detection and limit of quantification were 0.01 and 0.05 mg/kg, respectively. The results revealed that the developed and validated analytical method was suitable for pyriofenone determination in agricultural products.

Development and Validation of an Analytical Method for Ametoctradin Residue Determination in Domestic Agricultural Commodities by HPLC-PDA (HPLC-PDA를 이용한 국내 유통 농산물 중 ametoctradin 잔류량 분석법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Lee, Eun-Mi;Kim, Mi-Ra;Kuk, Ju-Hee;Cho, Yoon-Jae;Kang, Il-Hyun;Kim, Hyung-Su;Kwon, Kisung;Oh, Jae-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • This study was carried out to validate the safety of ametoctradin residues in agricultural commodities by developing an official analysis method. An analytical method was developed and validated using HPLC-PDA detectors. The samples were extracted with methanol, subsequently partitioned with dichloromethane and purified with florisil column chromatograph using acetone/hexane (30/70, v/v) as solvent. The method was validated by using grape, hulled rice, mandarin, and potato spiked with ametoctradin at 0.05 and 5.0 mg/kg, and pepper at 0.05 and 2.0 mg/kg. Average recoveries were 76-114.8% with relative standard deviation less than 10%, and the limit of detection and limit of quantification were 0.0125 and 0.05 mg/kg, respectively. The result of recoveries and overall coefficient of variation of the laboratory results from Gwangju regional Food and Drug Administration (FDA) and Daejeon regional FDA was accorded with Codex Alimentarius Commission Guideline (CAC/GL 40). Based on these results, this method was found to be appropriate for ametoctradin residue determination and can be used as the official method of analysis.

Development and validation of an analytical method for nematicide imicyafos determination in agricultural products by HPLC-UVD (HPLC-UVD를 이용한 살선충제 imicyafos의 시험법 개발 및 검증)

  • Do, Jung-Ah;Park, Hyejin;Kwon, Ji-Eun;Choi, Won-Jo;Lee, Hyun-Sook;Chang, Moon-Ik;Hong, Jin-Hwan;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.234-242
    • /
    • 2014
  • Imicyafos which is a nematicide for controlling root-knot nematodes has been registered in the Republic of Korea in 2012, and the maximum residue limits of imicyafos are set to watermelon and korean melon as each 0.05 mg/kg. Extremely reliable and sensitive analytical method is required for ensuring food safety on imicyafos residues in agricultural commodities. Imicyafos residues in samples were extracted with acetone, partitioned with hexane and dichloromethane, and then purified with florisil. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. Linear range was between 0.1~5 mg/kg with the correlation coefficient ($r^2$) 0.99997. Average recoveries of imicyafos ranged from 77.0 to 115.4% at the spiked levels of 0.02 and 0.05 mg/kg with the relative standard deviations of 2.2~9.6%. Limit of detection and quantification were 0.005 and 0.02 mg/kg, respectively. An inter-laboratory study was conducted to validate the determination method in depth, and the results were satisfactory. All of the validation results revealed that the developed analytical method in this study is relevant for imicyafos determination in agricultural commodities and will be used as an official analytical method.

Identification and Quantification of Glucosinolates in Rapeseed (Brassica napus L.) Sprouts Cultivated under Dark and Light Conditions

  • Lee, Min-Ki;Arasu, Mariadhas Valan;Chun, Jin-Hyuk;Seo, Jeong Min;Lee, Ki-Teak;Hong, Soon-Taek;Kim, In Ho;Lee, Yong-Hwa;Jang, Young-Seok;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • BACKGROUND: This study was performed for the identification and quantification of glucosinolate (GSL) contents in seven varieties of rapeseed (Brassica napus L.) sprouts cultivated under dark and light conditions. METHODS AND RESULTS: Crude glucosinolates (GSLs) were desulfated by treating with aryl sulfatase and purified using diethylaminoethyl sepharose (DEAE) anion exchange column. Individual GSLs were quantified using high-performance liquid chromatography (HPLC) with electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Eleven GSLs including six aliphatic (progoitrin, sinigrin, glucoalyssin, gluconapoleiferin, gluconapin, and glucobrassicanapin), four indolyl (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) and one aromatic (gluconasturtiin) were identified based on the fragmentation patterns of MS spectrum. Aliphatic GSLs were noted as the predominant group with average 85.2% of the total contents. The most abundant GSLs were progoitrin which was ranged at $8.14-118.68{\mu}mol/g$ dry weight (DW). The highest total GSL amounts were documented in 'Hanra' ($146.02{\mu}mol/g$ DW) under light condition and 'Mokpo No. 68' ($86.67{\mu}mol/g$ DW) in dark condition, whereas the lowest was in 'Tamra' (30.13 and $14.50{\mu}mol/g$ DW) in both conditions. The sum of aliphatic GSLs attributed > 80% in all varieties, except 'Tamra' (67.7% and 64.9% in dark and light conditions, respectively) in the total GSL accumulation. Indolyl GSLs were ranged $2.41-15.73{\mu}mol/g$ DW, accounted 2.78-33.6% of the total GSLs in rapeseed varieties. CONCLUSION(S): These results provide valuable information regarding potential beneficial GSL contents individually. This study attempts to contribute to knowledge of the nutritional properties of the different varieties of rapeseed plants. These results may be useful for the evaluation of dietary information.

The Study on the Analysis Method of Tetrodotoxin in Puffer Fish (복어 중 테트로도톡신 분석법에 관한 연구)

  • Kang, Young-Woon;Lee, Yoon-Suk;Park, Sung-Kug;Seo, Jung-Heok;Kim, Mee-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • The current standard for testing tetrodotoxin (TTX) in foodstuffs is the mouse bioassay (MBA) in Korea as in many other countries. However, this test suffers from potential ethical concerns over the use of live animals. In addition, the mouse bioassay does not test for a specific toxin thus a sample resulting in mouse incapacitation would need further confirmatory testing to determine the exact source toxin (e.g., TTX, STX, brevotoxin, etc.). Furthermore, though the time of death is proportional to toxicity in this assay, the dynamic range for this proportional relationship is small thus many samples must be diluted and new mice be injected to yield a result that falls within the quantitative dynamic range. Therefore, in recent years, there have been many efforts in this field to develop alternative assays. High performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) has been emerged as one of the most promising options. A LC-MS-MS method involves solid-phase extraction (SPE) and followed by analysis using an electrospray in the positive ionization mode and multiple reactions monitoring (MRM). To adopt LC-MS-MS method as alternative standard for testing TTX, we performed a validation study for the quantification of TTX in puffer fish. This LC-MS-MS method showed good sensitivity as limits of detection (LOD) of $0.03{\sim}0.08{\mu}g/g$ and limits of quantification (LOQ) of $0.10{\sim}0.25{\mu}g/g$. The linearity ($r^2$) of tetrodotoxin were 0.9986~0.9997, the recovery were 80.9~103.0% and the relative standard deviations (RSD) were 4.3~13.0%. The correlation coefficient between the mouse bioassay and LC/MS/MS method was higher than 0.95.

Quantitative analysis of water-soluble vitamins and polyphenolic compounds in tomato varieties (Solanum lycopersicum L.) (토마토(Solanum lycopersicum L.) 품종 간 수용성 비타민과 폴리페놀계 성분 함량 변이 분석)

  • Kim, Daen;Son, Beunggu;Choi, Youngwhan;Kang, Jumsoon;Lee, Yongjae;Je, Beungil;Park, Younghoon
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Tomato fruit quality is determined by the contents of various functional metabolites in addition to fruit appearance. To develop tomato cultivars with higher amounts of functional compounds, an efficient quantification method is required to identify the natural variations in the compounds in the tomato germplasm. In this study, we investigated tomato varieties, which included 23 inbred lines and 12 commercial F1 cultivars, for their contents of seven watersoluble vitamins (vitamin C, vitamins B1, B2, B3, B5, B6, and B9) and five polyphenolic compounds (quercetin, rutin, kaempferol, myricetin, and naringenin chalcone). The results of high performance liquid chromatography and liquid chromatography-mass spectrometry showed that vitamin C and naringenin chalcone were the major water-soluble vitamins and polyphenolic compounds, respectively, and their abundance was highly variable depending on the cultivar. By contrast, the contents of vitamin B1, quercetin, and kaempferol were lowest among the cultivars. With regard to the relationship between metabolic compounds and fruit characteristics, a significant association was found in fruit size, indicating that cherry tomato varieties contain higher amounts of the compounds compared to large fresh-type varieties. However, no direct association was detected in fruit color, except for naringenin chalcone. The results of this study provide new insights on the quantification of metabolic compounds and the selection of breeding materials, which are prerequisites for the development of functional tomato varieties.