• Title/Summary/Keyword: HPLC Chromatography

Search Result 2,212, Processing Time 0.03 seconds

Salt-water Processing-dependent Change in Anti-oxidative and Anti-inflammatory Effects of Cortex Eucommiae (염수초 포제법에 따른 두충의 항산화 및 항염증 활성 변화 비교연구)

  • Koh, Wonil;Lee, Jinho;Ha, In-Hyuk;Chung, Hwa-Jin;Lee, In-Hee;Lee, Jae-Woong;Kim, Eun Jee;Gang, Byeong-Gu;Jeon, Se Hwan;Cho, Yongkyu;Kim, Min-Jeong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.29-38
    • /
    • 2017
  • Objectives The present study aimed to investigate the change in marker compounds, anti-oxidative and anti-inflammatory effects of salt-water processed Cortex Eucommiae. Methods To evaluate the influence of processing on anti-oxidant effect of Cortex Eucommiae, changes in total phenol, total flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging, and ferric reducing antioxidant power (FRAP) between processed and raw Cortex Eucommiae were assessed. In addition, nitrite assay was conducted to determine the influence of processing on anti-inflammatory effect of Cortex Eucommiae. Cell viability was also examined as to elucidate whether processing affects cytotoxicity of Cortex Eucommiae. Finally, high-performance liquid chromatography (HPLC) analysis was conducted to monitor changes in pinoresinol diglucoside amount of processed and raw Cortex Eucommiae. Results Salt-water processed Cortex Eucommiae showed higher total phenol and flavonoid amount, compared to raw Cortex Eucommiae. Furthermore, anti-oxidative activity of processed Cortex Eucommiae was improved as discovered in DPPH, ABTS, and FRAP assays. Anti-inflammatory effect of Cortex Eucommiae was also enhanced following salt-water processing, as evidenced in nitrite assay. HPLC analysis found that the amount of pinoresinol diglucoside, widely known as the marker compound of Cortex Eucommiae, increases through salt-water processing. All experiments were performed with non-toxic concentration of Cortex Eucommiae; processing did not affect the cytotoxicity of Cortex Eucommiae up to the currently adopted concentration. Conclusions The present results support that salt-water processing of Cortex Eucommiae is beneficial in terms of marker compound amount, anti-oxidative, and anti-inflammatory activities. Additional investigations are needed to standardize the processing method of Cortex Eucommiae.

Cultivar Selection for Peanut Sprouts and Investigation on the Growth Stage for the High Level of Resveratrol (땅콩나물용 품종선발과 고함량 레스베라트롤 생육단계 구명)

  • Park, Eun-Ji;Lee, Gyu-Bin;Heo, You;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Lim, Chae-Shin;Kang, Jum-Soon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • This study was conducted to find out optimum cultivars, and growth temperature and stage in peanut sprout for resveratrol production. Morphological characteristic, days to 50% of the final germination percentage($T_{50}$) and early growth vigor were measured in 8 different peanut varieties. In result 'Jopyeong' appeared to be the most appropriate cultivar for peanut production because of its lower contamination rate, lesser lateral root formation, and thicker hypocotyl length. Optimum temperature for growing peanut sprouts was determined 27. Content of resveratrol was examined by high performance liquid chromatography(HPLC) to investigate appropriate growth stage of peanut sprouts for resveratrol production. Resveratrol was higher than $17.0{\mu}g/g$ in peanuts sprouts 9 days after plating. Considering peanut sprout's shapes and content of resveratrol into account, it was most appropriate to harvest in 9-day after germination.

Analysis of Bioconversion Components of Fermentation Hwangryunhaedok-tang (발효 황련해독탕의 생물 전환 성분분석)

  • Lee, Kwang Jin;Lee, BoHyoung;Jung, Pil Mun;Lian, Chun;Ma, Jin Yeul
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.293-298
    • /
    • 2013
  • Hwangryunhaedok-tang (HRT) is a traditional herbal medicine, which has been known as a useful prescription for anti-biotic, anti-inflammatory, anti-oxidative and immunosuppressive activity. In this study, the variation in the amount of eight bioactive components of Hwangryunhaedok-tang (HRT) and its fermentation HRT with Lactobacillus casei KFRI 127, Lactobacillus curvatus KFRI 166 and Lactobacillus confuses KFRI 227 was investigated via high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Simultaneous qualitative and quantitative analysis of eight bioactive components; geniposide, genipin, baicalin, wogonoside, palmatine, berberine, baicalein and wogonin was achieved by comparing their retention times ($t_R$) and UV spectra with those of the standard components. All calibration curve of standard components showed good linearity ($r^2$ >0.979). As a result, the geniposide amount was $15.52{\pm}0.19{\mu}/mg$ that as a main components in HRT. The wogonoside was decreased by 29.28~58.35% with Lactobacillus casei KFRI 127 and L. confuses KFRI 227 ($3.17{\pm}0.31{\mu}g/mg$ and $3.55{\pm}0.13{\mu}g/mg$) compared with the original HRT ($5.02{\pm}0.14{\mu}g/mg$). Otherwise wogonin was increased by 16.28~41.86% with Lactobacillus casei KFRI 127 and L. confuses KFRI 227 ($0.61{\pm}0.01{\mu}g/mg$ and $0.50{\pm}0.02{\mu}g/mg$) compared with the original HRT($0.43{\pm}0.00{\mu}g/mg$). HRT fermented with L. casei KFRI 127 and L. confuses KFRI 227 were evaluated as creating the changes in wogonoside to that aglycon wogonine. In the fermented HRT using Lactobacillus acidophilus KFRI 166, the genipin was only detected, among 3 species of fermentation strains. Thus, these results considered that the strains 166 were exhibited the remarkable changes in genipin.

Purification and Characterization of Gibberellin $3Beta$-Hydroxylase from Immature Seeds of Phaseolus vulgaris (강낭콩미숙종자로부터 Gibberellin $3Beta$-Hydroxylase 정제 및 성질)

  • 곽상수
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.133-148
    • /
    • 1987
  • Gibberellin(GA) 3-$\beta$ hydroxylation is very important for the shoot elogation in the higher plants, since only 3$\beta$-hydryoxylated GAs promote shoot elogation in several plants. Fluctuation of 3$\beta$-hydryoxylase activity was examined during seed maturation using two cultivars of , P. vulgaris, Kentucky Wonder (normal) and Masterpiece (dwarf). Very immature seeds of both cultivars contain high level of 3$\beta$-hydroxylase activity (per mg protein). Both cultivars showed maximum of enzyme activity (per seed) in the middle of their maturation process. Gibberellin 3$\beta$-hydroxylase catalyzing the hydroxylation of GA20 to GA1 was purified 313-fold from very early immature seeds of P. vulgaris. Crude soluble enzyme extracts were purified by 15% methanol precipitation, hydrophobic interaction chromatogrphy, DEAE ion exchange column chromatography and gel filtration HPLC. The 3$\beta$-hydroxylase activity was unstable and lost much of its activity duting the purification. The molecular weight of purified enzyme was extimated to be 42, 000 by gel filtration HPLC and SDS-PAGE. The enzyme exhibited maximum activity at pH 7.7. The Km values for [2.3-3H] GA20 and [2.3-3H]GA9 were 0.29 $\mu$M and 0.33 $\mu$M, respectively. The enzyme requires 2-oxoglutarate as a cosubstrate; the Km value for 2-oxoglutarate was 250 $\mu$M using 3H GA20 as a substrate. Fe2+ and ascorbate significantly activated the enzyme at all purification steps, while catalase and BSA activated the purified enzyme only. The enzyme was inhibited by divalent cations Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+. Effects of several GAs and GA anaogues on the putrified 3$\beta$-hydroxylase were examined using [3H]GA9 and GA20 as a substrates. Among them, GA5, GA9, GA15, GA20 and GA44 inhibited the enzyme activity. [13C, 3H] GA20 was converted by the partially purified enzyme preparation to [13C, 3H]GA1, GA5 and GA6, which were identified by GC-MS, GA9 was converted only GA4, GA15 and GA44 were converted to GA37 and GA38, respectively. GA5 was epoxidized to GA6 by the preparation. This suggests that 3$\beta$-hydroxylation of GA20 and epoxidation of GA5 are catalyzed by the same enzyme in P, vulgaris.

  • PDF

Antimicrobial Activity of the Coriolus versicolor Liquid Culture Extracts Against Antibiotic Resistant Bacteria and Purification of Active Substance (구름버섯 균사체 배양 추출물의 복합내성 세균에 대한 항균활성 및 활성물질의 정제)

  • Lee, Jung-Sun;Kim, Taeg;Lee, Yoon-Hi;Jin, Cheng-Min;Kim, Hyun-Guell;Kim, Woo-Jung;Oh, Duek-Chul;Park, Yong-Il
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.92-97
    • /
    • 2006
  • The liquid culture extract of Coriolus versicolor was prepared by directly boiling the whole culture broth 7 days after incubation in 12% citrus extract medium. After removal of mycelial debris through filtration, this extract was further extracted with equal volume of ethyl acetate (1 : 1, v/v). The ethyl acetate extracts showed significant antibacterial activities against Stapylococcus aureus CCARM3230 and Psudomonas aeruginosa CCARM2171, which are resistant to several antibiotics. The most active fraction was eluted from a silica gel column with a mixture of dichloromethane and methanol (9 : 1, v/v) and the purity of this active substance was confirmed by HPLC analysis. The results suggest that the purified active substance could be a good source for the development of a new antimicrobial agent, especially for the treatment of antibiotic resistant bacteria.

Modulatory Effect of Four Azulene Derivatives from the Fruiting Bodies of Lactarius hatsudake on Interferon-$\gamma$ Production (젖버섯아재비 자실체로부터 분리한 Azulene계 화합물이 Interferon-$\gamma$ 생성에 미치는 영향)

  • Xu, Guang Hua;Kim, Jae-Wha;Li, Gao;Yoo, Ick-Dong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Investigation of secondary bioactive metabolites from the fruiting bodies of Lactarius hatsudake led to the isolation of four azulene derivatives by means of repeated column chromatography and preparative HPLC, and they were identified as 1-formyl-4-methyl-7-isopropyl azulene (1), lactaroviolin (2), 4-methyl-7-isopropyl-azulene-1-carboxylic acid (3), and 1-formyl-4-methyl-7-(1-hydroxy-1-methylethyl) azulene (4) by their physico-chemical properties and spectroscopic analysis. The isolated compounds were evaluated for the effects on modulation of cytokines in natural killer cell line (NK92 cells). Compounds 1 and 4 strongly inhibited IFN-$\gamma$ production in a dose-dependent manner, corresponding to 101.3 % and 92.7 % inhibition at 400 ${\mu}M$, and 11.9 % and 24.1 % at 100 ${\mu}M$, respectively, whereas compounds 2 and 3 showed weak inhibitory effect on INF-$\gamma$ production, corresponding to 45.9 % and 18.0 % inhibition at 400 ${\mu}M$.

Impact of Cooking Method on Bioactive Compound Content and Antioxidant Capacity of Cabbage (양배추 가공조건에 따른 생리활성 물질의 함량 및 항산화 활성)

  • Hwang, Eun-Sun;Thi, Nhuan Do
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.184-190
    • /
    • 2015
  • We evaluated the effects of three common cabbage cooking methods (blanching, steaming and microwaving) on glucosinolate and S-methylmethionine (SMM) content and total antioxidant capacity of cabbage leaves. We detected four glucosinolates, including glucoraphanin, sinigrin, glucobrassicin, and 4-methoxyglucobrassicin, by high-pressure liquid chromatography (HPLC). Cabbage contained high levels of SMM (192.85 mg/100 g dry weight), compared to other cruciferous vegetables. Blanching cabbage leaves for one to ten minutes decreased glucosinolate and SMM levels, whereas microwaving or steaming cabbage for 5-10 min preserved glucosinolate and SMM levels. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities of cooked cabbage generally decreased as cooking time increased, but microwave cooking had a smaller negative effect on antioxidant activities than blanching or steaming. This study demonstrates that some domestic cooking methods, such as microwaving and steaming, can increase the bioaccessibility of glucosinolates and SMM, highlighting the positive role of cooking on the nutritional qualities of cabbage.

PC12 Cell Protective Effects of Broccoli (Brassica oleracea var. italica) Leaf Fraction against H2O2-induced Oxidative Stress (H2O2로 유발된 산화적 스트레스에 대한 브로콜리(Brassica oleracea var. italica) 잎 분획물의 PC12 cell 보호 효과)

  • Park, Seon Kyeong;Jin, Dong Eun;Park, Chang Hyeon;Seung, Tae Wan;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.483-488
    • /
    • 2014
  • To examine the physiological effects of broccoli (Brassica oleracea var. italica) leaf, the bioavailable compounds in broccoli leaf extract, and its in vitro neuroprotective effects against $H_2O_2$-induced oxidative stress were examined in this study. The chloroform fraction of broccoli leaf extract had the highest total phenolic content of all the fraction than others, and the highest 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging activity and malondialdehyde (MDA) inhibitory effect. Intracellular reactive oxygen species (ROS) accumulation resulting in $H_2O_2$-treated in PC12 cells was significantly lower when the chloroform fraction was present in the medium compared to that in PC12 cells treated with $H_2O_2$ alone. In a cell viability assay performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the chloroform fraction showed protective effects against $H_2O_2$-induced neurotoxicity and inhibited lactate dehydrogenase (LDH) release into the medium. High-performance liquid chromatography (HPLC) analysis showed that ferulic acid was the predominant phenolic compound in chloroform fraction of broccoli leaf.

Detection of Endolichenic Fungi Producing Antifungal Compound (항진균성 물질을 생산하는 지의류 내생 곰팡이의 탐색)

  • Kim, Eun-Sung;Choi, Kap-Seong;Choi, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.23-29
    • /
    • 2012
  • To isolate a novel antifungal compound, we obtained 100 kinds of endolichenic fungi from Korean Lichen & Allied Bioresources Center and examined their antifungal capability. Three fungi Usnea rigidula (2326), Parmotrema pseudotinctorum (2202) and Myelochroa sp. (2292) showed high antifungal activity against Candida albicans when they grew in both liquid and solid media. We extracted the culture supernatants of these three fungi with chloroform and then with ethyl acetate. Chloroform fraction exhibited the highest antifungal activities when those fractions were examined for the growth inhibition of Candida albicans with disc diffusion method. The chloroform faction was on further analysis with $C_{18}$ column chromatography to see whether the inhibitors are already known or not. Two peak fractions were collected from 4-day culture extract for Usnea rigidula and from 6-day culture extract for Parmotrema pseudotinctorum on the HPLC. A peak fraction from chloroform extracts of 4-day culture filtrate of Parmotrema pseudotinctorum showed higher antifungal activities against C. albicans and C. glabrata than another peak fraction. It appears that the antifungal materials are relatively nonpolar as usnic acid often found in lichenic fungi.

α-Glucosidase Inhibitory Effect of Vicine and α-Eleostearic Acid from the Seeds of Momordica charantia (여주씨에서 분리한 Vicine과 α-Eleostearic Acid의 α-glucosidase 저해효과)

  • Yuk, Heung Joo;Noh, Geon Min;Choe, Jeong Sook;Kwon, Oh Kyung;Hong, Su Young;Kang, Sang Soo;Cho, Kye Man;Park, Dong Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • BACKGROUND: Momordica charantia (MC) have been used in various parts of the world to treat diabetes. Despite the highest effects of phytochemicals than any other part of the plant, the main components of seed of MC grown in Korea and their properties have not been studied extensively. METHODS AND RESULTS: The seeds of MC were extracted into five different polarity solvents: 30%, 50%, 70%, 95% ethanol and distilled water. The 95% ethanol extract showed the most potent inhibition ($IC_{50}=88.7{\mu}g/mL$) against ${\alpha}$-glucosidase. To investigate the compounds responsible for this effect, activity guided fractionation of MC seeds by chromatography yielded two phytochemicals which were confirmed as vicine (1) and ${\alpha}$-eleostearic acid (2) based on their NMR and ESI-MS spectroscopic data. Among them, ${\alpha}$-eleostearic acid (2) possessed potent ${\alpha}$-glucosidase inhibitory activities with $IC_{50}$ values from $32.4{\mu}g/mL$. CONCLUSION: Collectively, the results from this present study strongly suggest that both extract and ${\alpha}$-eleostearic acid (2) have potent ${\alpha}$-glucosidase inhibitory activity. Furthermore, ${\alpha}$-eleostearic acid (2) as the most active ${\alpha}$-glucosidase inhibitor was proven to be present in high quantities in the MC seeds by a HPLC chromatogram.