• 제목/요약/키워드: HMM-based Speech recognizer

검색결과 41건 처리시간 0.02초

Implementation of HMM-Based Speech Recognizer Using TMS320C6711 DSP

  • Bae Hyojoon;Jung Sungyun;Bae Keunsung
    • 대한음성학회지:말소리
    • /
    • 제52호
    • /
    • pp.111-120
    • /
    • 2004
  • This paper focuses on the DSP implementation of an HMM-based speech recognizer that can handle several hundred words of vocabulary size as well as speaker independency. First, we develop an HMM-based speech recognition system on the PC that operates on the frame basis with parallel processing of feature extraction and Viterbi decoding to make the processing delay as small as possible. Many techniques such as linear discriminant analysis, state-based Gaussian selection, and phonetic tied mixture model are employed for reduction of computational burden and memory size. The system is then properly optimized and compiled on the TMS320C6711 DSP for real-time operation. The implemented system uses 486kbytes of memory for data and acoustic models, and 24.5 kbytes for program code. Maximum required time of 29.2 ms for processing a frame of 32 ms of speech validates real-time operation of the implemented system.

  • PDF

연속 잡음 음성 인식을 위한 다 모델 기반 인식기의 성능 향상에 대한 연구 (Performance Improvement in the Multi-Model Based Speech Recognizer for Continuous Noisy Speech Recognition)

  • 정용주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.55-65
    • /
    • 2008
  • Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.

  • PDF

Implementation of HMM-Based Speech Recognizer Using TMS320C6711 DSP

  • Bae Hyojoon;Jung Sungyun;Son Jongmok;Kwon Hongseok;Kim Siho;Bae Keunsung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.391-394
    • /
    • 2004
  • This paper focuses on the DSP implementation of an HMM-based speech recognizer that can handle several hundred words of vocabulary size as well as speaker independency. First, we develop an HMM-based speech recognition system on the PC that operates on the frame basis with parallel processing of feature extraction and Viterbi decoding to make the processing delay as small as possible. Many techniques such as linear discriminant analysis, state-based Gaussian selection, and phonetic tied mixture model are employed for reduction of computational burden and memory size. The system is then properly optimized and compiled on the TMS320C6711 DSP for real-time operation. The implemented system uses 486kbytes of memory for data and acoustic models, and 24.5kbytes for program code. Maximum required time of 29.2ms for processing a frame of 32ms of speech validates real-time operation of the implemented system.

  • PDF

TMS320F28335 DSP를 이용한 화자독립 음성인식기 구현 (Implementation of a Speaker-independent Speech Recognizer Using the TMS320F28335 DSP)

  • 정익주
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.95-100
    • /
    • 2009
  • In this paper, we implemented a speaker-independent speech recognizer using the TMS320F28335 DSP which is optimized for control applications. For this implementation, we used a small-sized commercial DSP module and developed a peripheral board including a codec, signal conditioning circuits and I/O interfaces. The speech signal digitized by the TLV320AIC23 codec is analyzed based on MFCC feature extraction methed and recognized using the continuous-density HMM. Thanks to the internal SRAM and flash memory on the TMS320F28335 DSP, we did not need any external memory devices. The internal flash memory contains ADPCM data for voice response as well as HMM data. Since the TMS320F28335 DSP is optimized for control applications, the recognizer may play a good role in the voice-activated control areas in aspect that it can integrate speech recognition capability and inherent control functions into the single DSP.

  • PDF

강인한 음성 인식 시스템을 사용한 감정 인식 (Emotion Recognition using Robust Speech Recognition System)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.586-591
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

한국인의 외국어 발화오류 검출을 위한 음성인식기의 발음 네트워크 구성 (Pronunciation Network Construction of Speech Recognizer for Mispronunciation Detection of Foreign Language)

  • 이상필;권철홍
    • 대한음성학회지:말소리
    • /
    • 제49호
    • /
    • pp.123-134
    • /
    • 2004
  • An automatic pronunciation correction system provides learners with correction guidelines for each mispronunciation. In this paper we propose an HMM based speech recognizer which automatically classifies pronunciation errors when Koreans speak Japanese. We also propose two pronunciation networks for automatic detection of mispronunciation. In this paper, we evaluated performances of the networks by computing the correlation between the human ratings and the machine scores obtained from the speech recognizer.

  • PDF

TMS320C6201 DSP를 이용한 HMM 기반의 음성인식기 구현 (Implementation of HMM Based Speech Recognizer with Medium Vocabulary Size Using TMS320C6201 DSP)

  • 정성윤;손종목;배건성
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권1E호
    • /
    • pp.20-24
    • /
    • 2006
  • In this paper, we focused on the real time implementation of a speech recognition system with medium size of vocabulary considering its application to a mobile phone. First, we developed the PC based variable vocabulary word recognizer having the size of program memory and total acoustic models as small as possible. To reduce the memory size of acoustic models, linear discriminant analysis and phonetic tied mixture were applied in the feature selection process and training HMMs, respectively. In addition, state based Gaussian selection method with the real time cepstral normalization was used for reduction of computational load and robust recognition. Then, we verified the real-time operation of the implemented recognition system on the TMS320C6201 EVM board. The implemented recognition system uses memory size of about 610 kbytes including both program memory and data memory. The recognition rate was 95.86% for ETRI 445DB, and 96.4%, 97.92%, 87.04% for three kinds of name databases collected through the mobile phones.

외국어 발음오류 검출 음성인식기를 위한 MCE 학습 알고리즘 (MCE Training Algorithm for a Speech Recognizer Detecting Mispronunciation of a Foreign Language)

  • 배민영;정용주;권철홍
    • 음성과학
    • /
    • 제11권4호
    • /
    • pp.43-52
    • /
    • 2004
  • Model parameters in HMM based speech recognition systems are normally estimated using Maximum Likelihood Estimation(MLE). The MLE method is based mainly on the principle of statistical data fitting in terms of increasing the HMM likelihood. The optimality of this training criterion is conditioned on the availability of infinite amount of training data and the correct choice of model. However, in practice, neither of these conditions is satisfied. In this paper, we propose a training algorithm, MCE(Minimum Classification Error), to improve the performance of a speech recognizer detecting mispronunciation of a foreign language. During the conventional MLE(Maximum Likelihood Estimation) training, the model parameters are adjusted to increase the likelihood of the word strings corresponding to the training utterances without taking account of the probability of other possible word strings. In contrast to MLE, the MCE training scheme takes account of possible competing word hypotheses and tries to reduce the probability of incorrect hypotheses. The discriminant training method using MCE shows better recognition results than the MLE method does.

  • PDF

Stereo Vision Neural Networks with Competition and Cooperation for Phoneme Recognition

  • Kim, Sung-Ill;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권1E호
    • /
    • pp.3-10
    • /
    • 2003
  • This paper describes two kinds of neural networks for stereoscopic vision, which have been applied to an identification of human speech. In speech recognition based on the stereoscopic vision neural networks (SVNN), the similarities are first obtained by comparing input vocal signals with standard models. They are then given to a dynamic process in which both competitive and cooperative processes are conducted among neighboring similarities. Through the dynamic processes, only one winner neuron is finally detected. In a comparative study, with, the average phoneme recognition accuracy on the two-layered SVNN was 7.7% higher than the Hidden Markov Model (HMM) recognizer with the structure of a single mixture and three states, and the three-layered was 6.6% higher. Therefore, it was noticed that SVNN outperformed the existing HMM recognizer in phoneme recognition.

DSR 환경에서의 다 모델 음성 인식시스템의 성능 향상 방법에 관한 연구 (A Study on Performance Improvement Method for the Multi-Model Speech Recognition System in the DSR Environment)

  • 장현백;정용주
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.137-142
    • /
    • 2010
  • 다 모델 음성인식기는 잡음환경에서 매우 우수한 성능을 보이는 것으로 평가되고 있다. 그러나 지금까지 다 모델 기반인식기의 성능시험에는 잡음에 대한 적응을 고려하지 않은 일반적인 전처리 방식이 주로 활용하였다. 본 논문에서는 보다 정확한 다 모델 기반인식기에 대한 성능 평가를 위해서 잡음에 대한 강인성이 충분히 고려된 전처리 방식을 채택하였다. 채택된 전처리 알고리듬은 ETSI (European Telecommunications Standards Institute)에서 DSR (Distributed Speech Recognition) 잡음환경을 위해서 제안된 AFE (Advanced Front-End) 방식이며 성능비교를 위해서 DSR 환경에서 좋은 성능을 나타낸 것으로 알려진 MTR (Multi-Style Training)을 사용하였다. 또한, 본 논문에서는 다 모델 기반인식기의 구조를 개선하여 인식성능의 향상을 이루고자 하였다. 기존의 방식과 달리 잡음음성과 가장 가까운 N개의 기준 HMM을 사용하여 기준 HMM의 선택시에 발생할 수 있는 오류 및 잡음신호의 변이에 대한 대비를 하도록 하였으며 각각의 기준 HMM을 훈련을 위해서 다수의 SNR 값을 이용함으로서 구축된 음향모델의 강인성을 높일 수 있도록 하였다. Aurora 2 데이터베이스에 대한 인식실험결과 개선된 다 모델기반인식기는 기존의 방식에 비해서 보다 향상된 인식성능을 보임을 알 수 있었다.