THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA Vol.22, No.1E 2003, 3. pp. 3~10

Stereo Vision Neural Networks with Competition
and Cooperation for Phoneme Recognition

Sung-1ll Kim®, Hyun—Yeol Chung’
*Division of Electrical and Electronic Engineering, Kyungnam University
®School of Electrical Engineering and Computer Science, Yeungnam University
(Received September 9 2002; revised November 22 2002; accepted December 20 2002)

Abstract

This paper describes two kinds of neural networks for stereoscopic vision, which have been applied to an identification
of human speech. In speech recognition based on the stereoscopic vision neural networks (SVNN), the similarities are
first obtained by comparing input vocal signals with standard models. They are then given to a dynamic process in which
roth competitive and cooperative processes are conducted among neighboring similarities. Through the dynamie processes,
only one winner neuron is finally detected. In a comparative study, with, the average phoneme recognition accuracy on
the two-layered SVNN was 7.7% higher than the Hidden Markov Model (HMM) recognizer with the structure of a single
mixture and three states, and the three-layered was 6.6% higher. Therefore, it was noticed that SVNN outperformed the

existing HMM recognizer in phoneme recognition.
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i Introduction

In the field of speech recognition or speech under-
standing, many studies have been conducted on the basis
of Hidden Markov Model (HMM)[1-3] and several kinds
of artificial neural networks {ANNs)[4-6]. Though HMM
has been regarded as a useful recognizer by producing
relatively accurate probabilistic acoustic models, it still
has a weakness in the viewpoint of the modeling with
human-like speech understanding. As the alternative
approach, therefore, ANNs such as multi-layer per-
ceptron{4], time-delay neural network[5], or hidden control
neural network[6] etc., have been introduced by modeling

an information processing mechanism of physiological
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human brain. The one of major strength of them is in the
fact that there is no need for any mathematical assumptions
about statistical distributions or independence among input
frames. However, there are still demerits of dealing with
to0 many parameters in both training and recognition
processes as well as structural complexity.

In the neural networks for stereoscopic vision, there are
two beneficial features compared with the above-mentioned
neural networks. The one thing is that it has much more
simple architecture because the network parameters are
always fixed and not revised at any time. The other is
that it has a powerful information processing capability
of identifying the most likely neuron among confusable
candidates. The process is made by both cooperative and
competitive process among their similarities. These stereo
vision neural networks (SVNN)[7-9] process those input
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visual data, yielding a depth perception of a specific object
in stereoscopic vision.

In the same way, it is assumed that speech recogmition
can be performed by the same process betweer vocal
features as input data and memorized ones as standard
models in human brain. In the processing, SVNN triggers
not only competition among similarities in all possible
speech candidates but cooperation among ones tn temporal
frames of the candidates, and finally so-calied winner-
take-all process plucks only one neuron from the candidates.
Though it has not been found if a visual processing
mechanism for depth perception is compatible with an
actual hearing system for speech recognition, it is worth
to apply the cognitive architecture in stereoscopic vision
to speech rtecognition, on the viewpoint of information
processing based on the neural networks.

In this new approach, the recently modified algorithms
of SVNN, which have been optimized through preliminary
investigations[10-12], were successfisl in stereoscopic depth
perception. We will describe the recently developed two-
and three-layered SVNN equations with dynamic process
of competitive and cooperative coupling among input
similarities. It would be then explored if the dynamic
process of SVNN works well in speech recognition,

. Stereo Vision Neural Networks

2.1. Depth Perception in Stereoscopic Vision

If two objects are separated in depth from the viewer,
the refative positions of their images will differ in the two
eyes. Owr brains are capable of measuring this disparity
and using it to estimate depth, which is processed on the
chiefly visual area 2(V2) of the neural networks of the
brain.

Figure | shows the depth perception phenomenon thai
is given by fusing the disparity of two different images.
It was produced by displacing the square area in the
random-dot image horizontally by a certain amount, where
we took one image with an original square area and the

other one with a horizontally displaced area.
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Figure 1, Depth perception using binocular difference (Top) Pair
of random-dot stereograms presented to the left and
right eyes, {Bottom) 3-dimensional image of the
stereograms viewed by the present neural net models.

If stereoscopically fused, the central square can be seen
as if it is floated over the image plane, through competitive
process among input similarities and cooperative process
among them as well. The membrane potentials of binocular
neurons corresponding o tach possibje disparity interact
each other through a neural network and specific neurons
win through a process of competition and cooperation,
resulting in a success of depth perception.

2.2. Two-layered SYNN Equations

The two-layered SYNN equations are given as
T & () =51+ fla)) (1)

where £%(1) is a time-dependent neural activity, for
example at an u-th temporal frame of an arbitrary vocaj
sound /a/, in which f{x) is a sigmoid function, that is
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where the second, third, and forth terms are referred as

the input similarity, competitive and cooperative coupling,



respectively. Therefore o i(t) is always influenced by
input similarity, A%t), as well as neighboring neural
activities, £%.(t). The summation indices of competitive
souphing run over the search area of alf available candidates,
within the range of ¢— g, < &' < ¢+ a, with 2 restriction
of o'#+4. On the other hand, the summation indices of
coaperative coupling run over the search area of all
frames, within the range of 2#—I< ¥ < u+/ With a
restiction of u'+u. A1) is a normalized simifarity

represented as following

e Nloju, . 2,)-<loghN >
. <logN > {4

where N is a Gaussian probability density function {PDF}
with mput data o¢,, mean z,, and covariance Za <fog
N> ig an average value over temporal frames. On the other
hand, g(u) is a function given by

t+ | ul
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A, B, D, w, h and r;, r; used in the above equations
are all positive constants which are fo be chosen
appropriately.

Figure 2 shows that the value of ¢ (1) determines a
certain point on the curve of sigmoid function. 1t is noticed
that the output value of &i(1) depends on what values 2
(t} takes. The neural net equations make g %{t) and £2(t)
move toward a stable point (0 or 1) in the Sigmoid function
ultimately.

Manhis bel267 o

éccnrding to
increasing o

7
0.7k /

0.6k

- ¥ J— et

04 f

according to .
ey decreasing o /o

.2 p \ ‘;‘;-

0.1k

4 E o 2 i

Figure 2. Sigmoid funclion with a coeflicient o 2(1).

Figure 3 shows the two-layered SVNN with a proces:
of competitive and cooperative coupling between two layers
such as @ j(t) and 2;(1). At equilibrium of E'i-—- a'§=0,

the equation (1) may be wrilten as
&Ny = fla) (6)

The solution of the equation means that £,(t} has an
identical movement in proportion to the coefficient value
of ai(1) that is greatly affected by both comgpetitive and
cooperative process among input similarities. As a result,
the most stable state in the equation would be obtained
through dynamic process of SVNN equations.

2.3. Three-layered SVNN Equations
The three-layered SVNN equations are given as

&L = -E W+ (B N

where £3{t) is a time-dependent neural activity and f{x)
is the sigmoid function defined in the two-layered, in
which B2(1) is a coefficient represented as a middle [ayer,
that is

B0 (5 = B0+ glert (1) + g€ (D) (8)
where g(u) Is a linear function given by

. uu>0
gy =u” = Du<h (9)
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Figure 3. Two~layered SVNN with a dynamic process of competi-
tive and cooperative coupling between «+{t) and £2(9.
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a (1) is given as following

vl =-al+ Ak -B Y gEO)+D S 2@
Tes v (10)

A B, D, and, r;, 75, 7 used in the above equations are
all positive constants. Figure 4 shows the three-layered
SVNN with 2 process of competitive and cooperative coupling
among three layers such as @ i(t), B41), and £2(0).

The equilibrium solution can be considered by assuming
that £2= 2= 82=0. Therefore, the equations of (7),

{8), (10) can be represented as following
E (1) = flgla,}+ gD an

The solution of the equation can be an intersection

Figure 4. Three-layered SVNN with a dynamic process of com
petitive and cooperative coupling among o2, R4,

and 2:2{t).
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Figure 5. The curves of y=£ and y= f (g (a) + 2(&).
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between y = £and y = f(g(a)+ g(&)). Figure 5 shows
a simulation on movement of the intersection point
between two equations, in which the intersection value
varies from 0 to 1.

In this simulation, it is noticed that the value of
intersection rises in proportion to an increase of a 2(t). As
a result of the dynamic process, £4(t) will approach a
certain stable point, so that only one neuron would be
determined regardless of initial conditions of SVNN

equations,

1. Application of SVNN to Speech Recog-
nition

The two kinds of SVNN equations mentioned above
have a common process in dealing with input similarities
in spite of each different mechanism. Namely, two
different neuvral net equations feature a dynamic process
with competition and cooperation. In speech recognition
based on SVNN, the similarities are first obtained by
comparing the input vocal signals with the trained standard
models.

The similarity map is then given to the dynamic process
with competitive and cooperative coupling. Figure 6 shows
the dynamic process among input similarities.

As shown in this figure, the first layer, a%(t), is

influenced by not only input similarities but neighboring

phoneme
nom oo 9w
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Figure 6. Competitive coupling among similarities in all possible
candidates and coaperative coupling in temporal frames.



peural activitics. Namely, it is activated by an inhibitory
coupling among candidates and by an excitatory coupling
among neighboring frames as well. The dynamic process
1 timately makes each neuron to converge to a certain final
value independent of the initial conditions of parameters
i1 neural net equations.

Figure 7 shows an example of time-dependent behaviors
of o 2(t) at the fifth frame of every candidate phonemes
ia which the similarity value of /n/ becomes even bigger
through a recursive processing than other candidates. Since
the excitatory coupling is more activated than the mnhibitory
one, the cooperative coupling causes « (1) to grow while
others fall down.

Figure 8 shows an example of time-dependent behaviors
of £%(1) influenced by « (1), It starts with the initial value
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Figure 9. Qutput values as a result of the dyramic process

using 2 and 3LNN equations with A=3.0 (3.0), B=35
(3.5). D=2.0 (1.5}, w=1.0 (25}, h=0.5 {0.5) in 2UNN
(3LNNJ.

preset in the neural net equations. « §(t) first takes values

corresponding to  A4(t). £i(1) then updates its value
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Figure 7. Time-dependent behaviors of ¢2(t} at the fifth frame of every candidate phonemes.
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Figure 8. Time-dependent behaviors of £:2(t) at the fifth frame
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through competition-cooperation process among neighboring
neural activities. In this figure, for example, the value of
&2(t) in /n/ grows to converge to a maximum point, while
others fall down to approach minimum values,

The binocular neurons compete over the inhibitory
coupling area and simultaneously cooperate over the
excitatory area. Through the dynamic process, therefore,
only one specific neuron wins over the other neurons
whose activities are damped to minimum points. As shown
in figure 2(2LNN) and 5(3LNN), the dynamic process

Table 1. Analysis of speech signals.

16 Khz, 16 Bit

0.97

16 msec Hamming windaw

15 ms

1 10 order MFCC + 10 order delta MFCC

Table 2. Comparison of HMM with two-layered SYNN on two
test sets

A 82.55 95.03 9385 99,23
7662 74.68 86.79 86.68

CH 84.62 7846 100.00 91.67
D 69.84 64.06 7407 70.37
E 64.77 86.36 80.86 98.77
G 57.14 46.75 4571 36.11
H 63.46 50.00 53.33 60.00
I 69.16 85.71 84.18 97.64
J g7.01 94.02 93.10 89.66
K 55.25 61.18 67.02 6312
M 61.90 44.33 86.67 7867
N 44.30 40.00 50.00 45.83
) 70.58 92.18 66.67 96.48
P 64.00 61.53 100.00 100.00
R 62.34 2894 42.30 2236
S 89.01 90.10 76.40 91.01
SH 96.05 84.21 1.1 95.56
T 435 33.33 15.38 56.41
TS 65.22 86.95 89.74 88.74
U 94.78 61.66 59.80 85.33
W 84.38 54.54 91.03 91.15
¥ 61.36 6363 87.30 94.84
z 87.76 66.67 93.10 92.59
Total{%} 71.56 7741 72.37 8287

ultimately makes o 4(t) and £ (t} to move toward a stable
point, namely 0 or 1, regardless of the initial conditions
of parameters.

Figure 9 shows an example of output values through
dynamic process in which parameters were determined
experimentally. The neuron with value of near 1 is called
a winner neuron, whereas one with value of 0 is called
a loser neuron. Since /n/ has more winner neurons than
others, it is finally recognized as the most likely candidate
to input speech.

IV. Experiments and Discussion

The Japanese phoneme recognition based on SVNN was
conducted, which was also compared with the performance

Table 3. Comparisen of HMM with three-layered SYNN on two
test sets.

NG 5346 83.54 §8.62 89.03
A 92.55 94.62 93.85 96.41
B 76.62 7722 86.79 86.79
CH 84.62 83.08 100.00 83.33
D 69.84 7188 7407 62.96
E 64.77 86.74 80.86 96.30
G 57.14 48.05 4571 38.89
H 63.46 51.92 5333 60.00
] 69.16 86.04 84.18 96.97
J 97.0t 9403 93.10 93.1¢
K 55.25 67.58 67.02 58.16
M 61.90 4717 86.67 60.00
N 4430 3875 50.00 50.00
0 70.58 91.56 66.67 89.45
P 64.00 4000 100.00 77.78
R 62.34 2597 42.30 35.65
$ 89.01 86.81 76.40 7865
SH 96.05 84.21 91.11 95.56
T 435 2899 15.38 48.72
TS 65.22 86.96 89.74 89.74
u 94.78 62.07 59.80 68.00
w 84.38 89.70 91.03 7415
Y 61.36 7273 87.30 92.86
Z 87.76 87.76 93.10 93.33
Total(%) 71.56 78.05 72.37 78.94

8  THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA Vol.22, No.1E




of HMM speech recognizer with a structure of a single
mixture and three states. For training standard models, fist
of all, each of recognition systems used two kinds of the
rhoneme-labeled training database. The labeled phonemes
were extracted from ATR Japanese word speech database
which was composed of 4000 words spoken by 10 male
speakers, and from ASJ Japanese continuous speech
catabase which was composed of 500 sentences by 6 male
speakers. For evaluation, test data consisted of two kinds,
cne from database of 216 words set and the other from
740 words set, each of which is the phoneme balanced
ATR database spoken by 3 male speakers, respectively.

Table 1 shows the analysis of speech signals in which
10 dimensional Mel-frequency Cepstrum coefficients
{MFCC) and their derivatives were used for feature
parameters. In order to absorb the changes of the
characteristic features in the same phoneme, the feature
ciata is divided into two parts, the former half and the latter
lalf in each phoneme. The input data, which is divided
into two parts, is compared with the corresponding part
of the Gaussian PDF’s separately and a similarity map is
then obtained for a dynamic process of SVNN.

The speaker independent recognition accuracies based
on two- and three-layered SVNN were shown in Table 2
and 3, respectively.

When using two-layered SVNN, the average recognition
accuracies of 3 speakers were 77.41% and 82.87% for 216
and 240 test sets, which were compared with 71.56% and
¥2.37% by HMM, respectively, When using three-layered
SVNN, on the other hand, the accuracies were 78.05%
78.94% for 216 and 240 test set, respectively.

Table 4 shows the overall recognition accuracies on the
performance based on SVNN compared with HMM. On
Z16-test set, the accuracies for two- and three-layered
SVNN were about 5.9% and 6.5% higher than HMM,
tespectively. On 240-test set, on the other hand, the accu-
1acies for two- and three-layered SVNN were 9.5% and
(16% higher than HMM, respectively. As shown in this
table, two-layered SVNN was 7.7% higher in average and
three-layered was 6.6% higher. It is presumed that the
differences of performance between two- and three-layered
SVNN occur because of the difference of mechanism of

Table 4. Overall recognition accuracies for two—- and three-layered
SVNN in comparison with HMM.

Test set | Recognizer Rﬁ?:éy"" Improvement
216 set HWM 71.56%
2NN 7741% 59%
3LNN 78.05% 6.5%
240 set HVIM 7237%
2LNN 82.87% 95%
3LNN 78.94% 6.6%

choosing winner neuron.

As a result, it was found that SVNN outperformed the
existing HMM recognizer. However, as shown in phoneme
“R” for example, the accuracies based on SVNN do not
show always better performance in every phoneme than
HMM. In order to reduce the error rate in performance,
the first thing to be considered is an exact modeling of
the inner change of phonetic features. Since this study is
restricted to phoneme recognition, in addition, we should
make further experiments to word or continuous speech
recognition as future works.

V1. Conclusion

The present study focuses on enhancing the discriminative
capability in detecting the most likely candidate out of
confused sounds. The proposed neural networks were
proved to be successful in performing them in this respect.
Particularly, it was revealed that the mechanism of
dynamic process for stereoscopic vision, which played a
crucial role in selecting the best candidate as winner
neuron, might be compatible with the underlying principle
of speech identification. In addition, we could see that the
totally new types of the newral networks for speech
recognition were able to yield much simpler architecture
than the other ordinary artificial neural networks. From the
experimental results, moreover, it was shown that the
proposed approach with the unique characteristics in
recognizing speech had better recognition performance
than the existing HMM recognizer.

Stereo Vision Newral Networks with Compelition and Coopseration for Phoneme Recognition 9



References

1. P. C. Woodland, C. J. Leggestier, J. J. Odell, et.al., “The
1994 HTK Large Vocabulary Speech Recognition System,”
Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1, 73-76, 1995,

2. X. D. Huang, Y. Ariki, M. A, Jack, Hidden Makov Models
for Speech Recognition, Edinburgh University Press,
Edinburgh, U.K., 1980,

3. K. F. Lee, H. W. Hon, “Speaker-tndependent Phone Recog—
nition Using Hidden Markov Modeis,” /EEE Transaction
on Acoustic, Speech and Signal Processing. 37 (11),
641-1648, 1989.

4, H. Bourlard and C. J. Wellekens, “Links between Markov
Models and Multi-layer Perceptrons,” /EEE Transaction
Pait. Anal. Machine Intelf., 12, 1167-1178, 1990.

5. J. Lang, A. Waibel and G, E. Hinton, “A Time—Delay Neural
Network Archileclure for Isolated Word Recognition,”
Artificial Neural Networks, Paradigms, Applications and
Hargware Implementations, IEEE press, New York, 388-408,
1992,

6. G. Martinelli, “Hidden Control Neurat Network,” /EEE
Transaction on Circuits and Systems, Analog and Signal
Processing, 41 (3}, 245-247, 1994,

7. D. Reimann, T. Ditzinger, E. Fischer and H, Haken, “Vergence
eye movement condrol and multivalent perception of
Autosiereograms,” Biol, Cybern., 73, 123-128, 1995,

8. D. Reinmann and H. Haken, “Stereo Vision by Self-
organization,” Biol. Cybern., 71, 17-26, 1994,

9. S. Amari and M. A. Arbib, “Competition and Cooperation
in Neural Nets,” Systems Neuroscience, Academic Press,
119-165, 1977.

10. Y. Yoshitomi, 7. Kanda, 7. Kitazce, “Neural Nets Pattern
Recognition Equation for Stereo Vision,” Trans, IPS, 29—
38, 1998,

10 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA V0122, No.1E

11. Y. Yoshitomi, T. Kitazoe, J. Tomiyama, Y. Talebe,
“Sequential stereo Vision and Phase Transition,” Proc.
Third International Symposium on Ariificial Life, and
Robotics, 318~323, 1998.

12. T. Kitazoe, J. Tomiyama, Y. Yoshitomi et al., “Sequential
Stereoscopic Vision and Hysteresis,” Proc. Neurat Infor-
mation Processing, 391-396, 1998.

[Profile)

# Sung-Il1 Kim

Sung-Ill Kim was bom in Kyungbuk, Korea, 1968. He received his B.S. and
M.S. degrees in the Department of Electronics Engineering from Yeungnam
University, in 1997, and Ph.D. degree in the Department of Computer Sclence
& Systems Engineering from Miyazaki University, Japan, in 2000. During 2000
to 2001, he was a postdoctoral researchar in the National institute for
Longevity Sciences, Japan. He worked in the Center of Speech Technology,
Tsinghua University, China dusing 2001 to 2003. Cumently, he is full-time
lectures in the Division of Electrical & Electronic Engineering, Kyungnam
University since 2003. His reseasch interests include speechf/emotion
recognition, neural networks, and mwitimedia signal processing. E-mail;
kimstar@kyungnam.ac. ke

# Hyun-Yeol Chung

Hyun-Yeol Chung was born in Kyungnam, Korea, 1951. He receivad his B.S.
and MS. degrees in the Department of Electronics Engineering from
Yeungnam University, in 1975 and 1981, respectively, and the Ph.D. degree
in the Information Sciences from Tohoku University, Japan, in 1989. He was
a professor from 1989 to 1997 at the School of Electrical and Electronic
Engineesing, Yeungnam University. Since 1988 he is a professor in the Schod
of Electrical Engineering and Computer Science, Yeungnam University. During
1992 to 1993, he was a visiting sclentist in the Department of Computer
Science, Camegie Meflon University, Pittsburgh, USA. He was a visiting
scientist in the Department of Information and Computer Sciences, Toyohashi
University, Japan, in 1994. He was a principle engineer, Quatlcomm Inc., USA,
in 2000. His research interests include speech analysis, speech/speaker
recognition, multimedia and digital signal processing application. E-mail,
hychung@yu.ac.kr


mailto:kimstar@kyungnam.ac.kr
mailto:hychung@yu.ac.kr

