• Title/Summary/Keyword: HLII probabilistic reliability

Search Result 7, Processing Time 0.017 seconds

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

A Study on Nodal Probabilistic Reliability Evaluation at Load Points (각 지역별 확률론적 신뢰도 평가에 관한 연구)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.206-209
    • /
    • 2001
  • This paper illustrates a new method for reliability evaluation at load points in a composite power system. The algorithm includes uncertainties of generators and transmission lines as well as main transformers at substations. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a small test system.

  • PDF

Development of the ELDC and Reliability Analysis of Composite Power System by Monte Carlo Method (Monte Carlo법에 의한 복합전력계통의 유효부하지속곡선 작성법 및 개발 및 신뢰도 해석)

  • Moon, Seung-Pil;Choi, Jae-Seok;Shin, Heung-Kyo;Lee, Sun-Young;Song, Kil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • This paper presents a method for constructing composite power system effective load duration curves(CMELDC) at load points by Monte Carlo method. The concept of effective load duration curves(ELDC) in power system planning is useful and important in both HLII. CMELDC can be obtained from convolution integral processing of the probability function of unsupplied power and the load duration curve at each load point. This concept is analogy to the ELEC in HLI. And, the reliability indices (LOLP, EDNS) for composite power system are evaluated using CMELDC. Differences in reliability levels between HLI and HLII come from considering with the uncertainty associated with the outages of the transmission system. It is expected that the CMELDC can be applied usefully to areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. in HLII, DC load flow and Monte Carlo method are used for this study. The characteristics and effectiveness of thes methodology are illustrated by a case study of the IEEE RTS.

  • PDF

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation (각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법)

  • Kim, Hong-Sik;Moon, Seung-Pil;Choi, Jae-Seok;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

A Study on Probabilistic Reliability Evaluation of Transmission System (송전계통의 확률론적 신뢰도 평가에 관한 연구)

  • Kang, S.R.;Kim, K.H.;Tinh, T.T.;Choi, J.S.;Jeon, D.H.;Lee, Y.T.;Moon, S.P.;Choo, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.42-45
    • /
    • 2003
  • This paper presents a method for assessing reliability indices of transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. The key point idea is based on that the reliability level of transmission system is equal to reliability level difference of between composite power system(HLII) and generation system(HLI). It is the reason that composite power system includes uncertainties and capacity limit of transmission lines. The practicality and effectiveness of this methodology are illustrated by the case study using the KEPCO size system.

  • PDF

A Basic Study on Reliability Evaluation using METRIS for Long Term Expansion Planning of Transmission System (송전개통망의 장기확충계획수립을 위한 METRIS를 이용한 신뢰도 평가에 관한 기초연구)

  • Kang, Sung-Rok;Tinh, Tran Trung;Chei, Jae-Seok;Cha, Jun-Min;Choo, Jin-Boo;Jeon, Dong-Hun;Moon, Seung-Pil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.361-364
    • /
    • 2002
  • The paper presents a basic study on reliability evaluation using METRIS for long term expansion planning of transmission system. The main frame of methodelogy of the reliability evaluation of a transmission system in the METRIS is based on evaluation philosophy that the reliability level of a transmission system is equal to difference between the reliability level of HLII and that of HLI. While basic general theory of probabilistic reliability evaluation of transmission system has been presented, the GUI characteristics of input/out data system of METRIS have been demonstrated by the RBTS case study on METRIS.

  • PDF